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Filling braided links with trisected surfaces

JEFFREY MEIER

We introduce the concept of a bridge trisection of a neatly embedded surface in a compact four-manifold,
generalizing previous work with Alexander Zupan in the setting of closed surfaces in closed four-manifolds.
Our main result states that any neatly embedded surface F in a compact four-manifold X can be isotoped
to lie in bridge trisected position with respect to any trisection T of X . A bridge trisection of F induces a
braiding of the link @F with respect to the open-book decomposition of @X induced by T , and we show
that the bridge trisection of F can be assumed to induce any such braiding.

We work in the general setting in which @X may be disconnected, and we describe how to encode bridge
trisected surface diagrammatically using shadow diagrams. We use shadow diagrams to show how bridge
trisected surfaces can be glued along portions of their boundary, and we explain how the data of the
braiding of the boundary link can be recovered from a shadow diagram. Throughout, numerous examples
and illustrations are given. We give a set of moves that we conjecture suffice to relate any two shadow
diagrams corresponding to a given surface.

We devote extra attention to the setting of surfaces in B4, where we give an independent proof of the
existence of bridge trisections and develop a second diagrammatic approach using tri-plane diagrams. We
characterize bridge trisections of ribbon surfaces in terms of their complexity parameters. The process of
passing between bridge trisections and band presentations for surfaces in B4 is addressed in detail and
presented with many examples.

57K10, 57K40, 57K45

1 Introduction

The philosophy underlying the theory of trisections is that four-dimensional objects can be decomposed
into three simple pieces whose intersections are well-enough controlled that all of the four-dimensional
data can be encoded on the two-dimensional intersection of the three pieces, leading to new diagrammatic
approaches to four-manifold topology. Trisections were first introduced for four-manifolds by Gay
and Kirby in 2016 [10]. A few years later, the theory was adapted to the setting of closed surfaces in
four-manifolds by the author and Zupan [27; 28]. The present article extends the theory to the general
setting of neatly embedded surfaces in compact four-manifolds, yielding two diagrammatic approaches to
the study of these objects: one that applies in general and one that applies when we restrict attention to
surfaces in B4.
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1.1 Bridge trisections of surfaces in B4

To introduce bridge trisections of surfaces in B4, we must establish some terminology. First, let H be a
three-ball D2�I , equipped with a critical-point-free Morse function D2�I ! I . Let T�H be a neatly
embedded one-manifold such that the restriction of the Morse function to each component of T has either
one critical point (a maximum) or none. If there are b components with one critical point and v with none,
we call .H;T/ a .b; v/–tangle. Next, let Z be a four-ball B3 � I , equipped with a critical-point-free
Morse function B3�I ! I . Let D�Z be a collection of neatly embedded disks such that the restriction
of the Morse function to each component of D has either one critical point (a minimum) or none. If there
are c components with one critical point and v with none, we call .Z;D/ a .c; v/–disk-tangle. Finally, let
T0 denote the standard trisection of B4 — ie the decomposition B4 DZ1[Z2[Z3 in which, for each
i 2Z3, the Zi are four-balls, the pairwise intersections Hi DZi�1\Zi are three-balls, and the common
intersection †DZ1\Z2\Z3 is a disk.

A neatly embedded surface F� B4 is in .b; c; v/–bridge position with respect to T0 if, for each i 2 Z3,

(1) F\Zi is a .ci ; v/–disk-tangle, where c D .c1; c2; c3/, and

(2) F\Hi is a .b; v/–tangle.

A definition very similar to this one was introduced independently in [2].

The trisection T0 induces the open-book decomposition of S3 D @B4 whose pages are the disks S3\Hi
and whose binding is @†. Let LD @F, and let ˇi D S3\Di . Then LD ˇ1[ˇ2[ˇ3 is braided about
@† with index v. Having outlined the requisite structures, we can state our existence result for bridge
trisections of surfaces in the four-ball.

Theorem 3.17 Let T0 be the standard trisection of B4, and let F� B4 be a neatly embedded surface
with L D @F. Fix an index v braiding Ǒ of L. Suppose F has a handle decomposition with c1 cups ,
n bands , and c3 caps. Then , for some b 2N0, F can be isotoped to be in .b; cI v/–bridge trisected position
with respect to T0, such that @FD Ǒ, where c2 D b�n.

Explicit in the above statement is a connection between the complexity parameters of a bridge trisected
surface and the numbers of each type of handle in a Morse decomposition of the surface. An immediate
consequence of this correspondence is the fact that a ribbon surface admits a bridge trisection where
c3 D 0. It turns out that this observation can be strengthened to give the following characterization of
ribbon surfaces in B4. Again, c D .c1; c2; c3/, and we set c D c1C c2C c3.

Theorem 3.21 Let T0 be the standard trisection of B4, and let F� B4 be a neatly embedded surface
with LD @F. Let Ǒ be an index v braiding L. Then the following are equivalent :

(1) F is ribbon.

(2) F admits a .b; cI v/–bridge trisection filling Ǒ with ci D 0 for some i .

(3) F admits a .b; 0I vCc/–bridge trisection filling a Markov perturbation ǑC of Ǒ.
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A bridge trisection turns out to be determined by its spine — ie the union .H1;T1/[.H2;T2/[.H3;T3/,
and each tangle .Hi ;Ti / can be faithfully encoded by a planar diagram. It follows that any surface in B4

can be encoded by a triple of planar diagrams whose pairwise unions are planar diagrams for split unions
of geometric braids and unlinks. We call such triples tri-plane diagrams.

Corollary 4.2 Every neatly embedded surface in B4 can be described by a tri-plane diagram.

In Section 4, we show how to read off the data of the braiding of L induced by a bridge trisection from a
tri-plane for the bridge trisection, and we describe a collection of moves that suffice to relate any two
tri-plane diagrams corresponding to a given bridge trisection. The reader concerned mainly with surfaces
in B4 can focus their attention on Sections 3 and 4, referring to the more general development of the
preliminary material given in Section 2 when needed.

1.2 Bridge trisections of surfaces in compact four-manifolds

Having summarized the results of the paper that pertain to the setting of B4, we now describe the more
general setting in which X is a compact four-manifold with (possibly disconnected) boundary and F�X

is a neatly embedded surface. To account for this added generality, we must expand the definitions given
earlier for the basic building blocks of a bridge trisection. For ease of exposition, we will not record the
complexity parameters, which are numerous in this setting; Section 2 contains compete details.

Let H be a compression body .† � I /[ .3–dimensional 2–handles/, where † D @CH is connected
and may have nonempty boundary, while P D @�H is allowed to be disconnected but cannot contain
two-sphere components. We work relative to the induced Morse function. Let T � H be a neatly
embedded one-manifold such that the restriction of the Morse function to each component of T has either
one critical point (a maxima) or none. We call .H;T/ a trivial tangle. Let Z be a four-dimensional
compression body .P � I � I /[ .4–dimensional 1–handles/, where P is as above. We work relative to
the obvious Morse function on Z. Let D � Z be a collection of neatly embedded disks such that the
restriction of the Morse function to each component of D has either one critical point (a minima) or none.
We call .Z;D/ a trivial disk-tangle.

Let X be a compact four-manifold, and let F�X be a neatly embedded surface. A bridge trisection of
.X;F/ is a decomposition

.X;F/D .Z1;D1/[ .Z2;D2/[ .Z3;D3/

such that, for each i 2 Z3,

(1) .Zi ;Di / is a trivial disk-tangle, and

(2) .Hi ;Ti /D .Zi�1;Di�1/\ .Zi ;Di / is a trivial tangle.

Algebraic & Geometric Topology, Volume 24 (2024)
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We let .†;x/ D @C.Hi ;Ti /. The underlying trisection X D Z1 [ Z2 [ Z3 induces an open-book
decomposition on each component of Y D @X , and we find that the bridge trisection of F induces a
braiding of L D @F with respect to these open-book decompositions. Given this set-up, our general
existence result can now be stated.

Theorem 8.1 Let T be a trisection of a four-manifold X with @X D Y , and let .B; �/ denote the
open-book decomposition of Y induced by T . Let F be a neatly embedded surface in X ; let LD @F; and
fix a braiding Ǒ of L about .B; �/. Then F can be isotoped to be in bridge trisected position with respect
to T such that @FD Ǒ. If L already coincides with the braiding ˇ, then this isotopy can be assumed to
restrict to the identity on Y .

If H is not a three-ball, then .H;T/ cannot be encoded as a planar diagram, as before. However, H is
determined by a collection of curves ˛�†n�.x/, and T is determined by a collection of arcs T� and the
points x in †, where the arcs of T� connect pairs of points of x. We call the data .†; ˛;T�;x/, which
determine the trivial tangle .H;T/, a tangle shadow. A triple of tangle shadows that satisfies certain
pairwise-standardness conditions is called a shadow diagram. Because bridge trisections are determined
by their spines, we obtain the following corollary.

Corollary 5.5 Let X be a smooth , orientable , compact , connected four-manifold , and let F be a neatly
embedded surface in X . Then .X;F/ can be described by a shadow diagram.

A detailed development of shadow diagrams is given in Section 5, where it is described how to read off
the data of the braiding of L induced by a bridge trisection from a shadow diagram corresponding to the
bridge trisection. Moves relating shadow diagrams corresponding to a fixed bridge trisection are given.
Section 6 discusses how to glue two bridge trisected surfaces so that the result is bridge trisected, as well
as how these gluings can be carried out with shadow diagrams.

Section 7 gives some basic classification results, as well as a handful of examples to add to the many
examples included throughout Sections 3–6. The proof of the main existence result, Theorem 8.1, is
delayed until Section 8, though it requires only the content of Section 2 to be accessible. In Section 9, we
discuss stabilization and perturbation operations that we conjecture are sufficient to relate any two bridge
trisections of a fixed surface. A positive resolution of this conjecture would give complete diagrammatic
calculi for studying surfaces via tri-plane diagrams and shadow diagrams.
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2 Preliminaries

In this section, we give a detailed development of the ingredients required throughout the paper, establishing
notation conventions as we go. This section should probably be considered as prerequisite for all the
following sections, save for Sections 3 and 4, which pertain to the consideration of surfaces in the four-ball.
The reader interested only in this setting may be able to skip ahead, referring back to this section only as
needed.

2.1 Some conventions

Unless otherwise noted, all manifolds and maps between manifolds are assumed to be smooth, and
manifolds are compact. The central objects of study here all have the form of a manifold pair .M;N /, by
which we mean that N is neatly embedded in M in the sense that @N � @M and N t @M [15]. When N
is compact (as it will always be here), N is properly embedded when it is neatly embedded and @N � @M
when N is properly embedded; the transversality condition on neat embeddings is not generally enjoyed
by proper embeddings. Throughout, N will usually have codimension two in M . In any event, we let
�.N / denote the interior of a tubular neighborhood of N in M . If M is oriented, we let .M;N / denote
the pair .M;N / with the opposite orientation and we call it the mirror of .M;N /. We use the symbol
t to denote either the disjoint union or the split union, depending on the context. For example, writing
.M1; N1/t .M2; N2/ indicates M1\M2 D∅. On the other hand, .M;N1 tN2/ indicates that N1 and
N2 are split in M , by which we usually mean there are disjoint, codimension zero balls B1 and B2 in M
(not necessarily neatly embedded) such that Ni � IntBi for each i 2 f1; 2g.

2.2 Lensed cobordisms

Given compact manifold pairs .M1; N1/ and .M2; N2/ with @.M1; N1/ Š @.M2; N2/ nonempty, we
normally think of a cobordism from .M1; N1/ to .M2; N2/ as a manifold pair .W;Z/, where

@.W;Z/D ..M1; N1/t .M2; N2//[ .@.M1; N1/� I /:

Thus, there is a cylindrical portion of the boundary. Consider the quotient space .W 0; Z0/ of .W;Z/
obtained via the identification .x; t/ � .x; t 0/ for all x 2 @M1 and t; t 0 2 I . The space .W 0; Z0/ is
diffeomorphic to .W;Z/, but

@.W 0; Z0/D .M1; N1/[@.M1;N1/ .M2; N2/:

We refer to .W 0; Z0/ as a lensed cobordism. An example of a lensed cobordism is the submanifold W 0

cobounded by two Seifert surfaces for a knotK in S3 that are disjoint in their interior. IfW DM1�I , then
we call W 0 a product lensed cobordism. An example of a product lensed cobordism is the submanifold
W 0 cobounded by two pages of an open-book decomposition on an ambient manifold X . See Figure 1
for examples of lensed cobordisms between surfaces that contain 1–dimensional cobordisms as neat
submanifolds.
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We offer the following two important remarks regarding our use of lensed cobordisms.

Remark 2.1 Throughout this article, we will be interested in cobordisms between manifolds with
boundary. For this reason, lensed cobordisms are naturally well-suited for our purposes. However, at
times we will be discussing cobordisms between closed manifolds (eg null-cobordisms). In this case,
lensed cobordisms do not make sense. We request that the reader remember to drop the adjective “lensed”
upon consideration of such cases. For example, if .M;N / is any manifold pair with N � Int.M/ closed,
then for the product lensed cobordism .M;N /� I , we have that M � I is lensed, but N � I is not.

Remark 2.2 Lensed cobordisms do not admit Morse functions where .M1; N1/ and .M2; N2/ represent
distinct level sets, since .M1; N1/\ .M2; N2/¤∅. However, the manifold pair

.W 00; Z00/D .W 0; Z0/ n �.@.M1; N1//

does admit such a function and is trivially diffeomorphic to .W 0; Z0/: We think of .W 00; Z00/ as being
formed by “indenting” .W 0; Z0/ by removing �.@.M1; N1//. Note that there is a natural identification
of .W 00; Z00/ with the original (ordinary) cobordism .W;Z/. Since a generic Morse function on the
cobordism W 00 will not have critical points on its boundary, there is no loss of information here. We
will have this modification in mind when we consider Morse functions on lensed cobordisms .W 0; Z0/,
which we will do throughout the paper. This subtlety illustrates that lensed cobordisms are unnatural in a
Morse-theoretic approach to manifold theory, but we believe they are more natural in a trisection-theoretic
approach.

2.3 Compression bodies

Given a surface † and a collection ˛ of pairwise disjoint, simple closed curves on †, let †˛ denote
the surface obtained by surgering † along ˛. Let H denote the three-manifold obtained by attaching a
collection h˛ of three-dimensional 2–handles to †� Œ�1; 1� along ˛� f1g, before filling in any resulting
sphere components with balls. As discussed in Remark 2.1, in the case that † has nonempty boundary, we
quotient out by the vertical portion of the boundary and view H as a lensed cobordism from @CH D†

to @�H D†˛. Considering H as an oriented manifold yields the decomposition

@H D @CH [@.@CH/ @�H:

The manifold H is called a (lensed) compression body. A collection D of disjoint, neatly embedded disks
in a compression body H is called a cut system for H if H n �.D/ Š .@�H/� I or H n �.D/ Š B3,
according with whether @.@CH/D @.@�H/ is nonempty or empty, respectively. A collection of essential,
simple closed curves on @CH is called a defining set of curves for H if it is the boundary of a cut system
for H .

In order to efficiently discuss compression bodies H for which @�H is disconnected, we will introduce
the following terminology.
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.H2;0;1;T2;3/ .H2;1;1;T0;3/ .H0;.0;0/;.1;1/;T3;.1;3//

Figure 1: Three examples of trivial tangles inside lensed compression bodies.

Definition 2.3 Given m 2 N0, an ordered partition of m is a sequence m D .m1; : : : ; mn/ such that
mj 2N0 and

P
mj Dm. We say that such an ordered partition is of type .m; n/. If mj > 0 for all j ,

then the ordered partition is called positive and is said to be of type .m; n/C. If mj Dm0 for all j , then
the ordered partition is called balanced.

Let †g denote the closed surface of genus g, and let †g;f denote the result of removing f disjoint, open
disks from †g . A surface † with n > 1 connected components is called ordered if there is an ordered
partition p D .p1; : : : ; pn/ of p 2N0 and a positive ordered partition f D .f1; : : : ; fn/ of f 2N such
that

†Š†p1;f1 t � � � t†pn;fn :

We denote such an ordered surface by†p;f , and we consider each†pj ;fj �†p;f to come equipped with
an ordering of its fj boundary components, when necessary. Note that we are requiring each component
of the disconnected surface †p;f to have boundary.

Let Hg;p;f denote the lensed compression body satisfying

(1) @CHg;p;f D†g;f , and

(2) @�Hg;p;f D†p;f .

If ˛ is a defining set for such a compression body, then ˛ consists of .n�1/ separating curves and .g�p/
nonseparating curves. See Figure 1 for three examples of lensed compression bodies, ignoring for now
the submanifolds. Let Hpj ;fj denote the product lensed cobordism from †pj ;fj to itself, and let

Hp;f D

1G
jD1

Hpj ;fj :

We refer to Hp;f as a spread.

A lensed compression bodyH admits a Morse functionˆ WH! Œ�1; 3�, which, as discussed in Remark 2.2,
is defined on H n �.@.@CH//, such that ˆ.@CH/ D �1, ˆ.@�H/ D 3, and ˆ has .n� 1/C .g � p/
critical points, all of index two, and all lying in ˆ�1.2/. We call such a ˆ a standard Morse function
for H . Every compression body admits a standard Morse function, even if it were built by capping off
two-sphere components with 3–handles. These 3–handles can be assumed to cancel with 2–handles.
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If 3–handles were required after 2–handles were attached to † along ˛, then some curves of ˛ were
unnecessary.

For a positive natural number I , we let xI �†g;f denote a fixed collection of I marked points.

2.4 Heegaard splittings and Heegaard-page splittings

Let M be an orientable three-manifold. A Heegaard splitting of M is a decomposition

M DH1[†H2;

where †�M is a neatly embedded surface †g;f , and each Hi is a lensed compression body Hg;p;f
with @CHi D†. It follows that

@M D @�H1[@† @�H2:

We denote the Heegaard splitting by .†IH1;H2/, and we call it a .gIp;f /–splitting, in reference to
the relevant parameters. Note that our notion of Heegaard splitting restricts to the usual notion when M
is closed, but is different from the usual notion when M has boundary. Our Heegaard splittings are a
special type of sutured manifold decomposition. Since each of the Hi is determined by a defining set of
curves ˛i on †, the Heegaard splitting, including M itself, is determined by the triple .†I˛1; ˛2/, which
is called a Heegaard diagram for M .

Remark 2.4 We have defined Heegaard splittings so that the two compression bodies are homeomorphic,
since this is the only case we will be interested in. Implicit in the set-up are matching orderings of
the components of the @�Hi in the case that j@�Hi j > 1. This will be important when we derive a
Heegaard-page structure from a Heegaard splitting below. See also Remark 2.11.

A Heegaard splitting .†IH1;H2/ with Hi ŠHg;p;f is called .m; n/–standard if there are cut systems
Di D fD

l
i g
n�1Cg�p

lD1
for the Hi such that

(1) For 1� l � n� 1, we have @Dl1 D @D
l
2, and this curve is separating;

(2) For n� l �mCn� 1, we have @Dl1 D @D
l
2, and this curve is nonseparating; and

(3) For mCn� l; l 0 � g�p, we have j@Dl1\@D
l 0

2 j given by the Kronecker delta ıl;l 0 , and the curves
@Dl1 and @Dl2 are nonseparating.

A Heegaard diagram .†I˛1; ˛2/ is called .m; n/–standard if ˛i D @Di for cut systems Di satisfying
these three properties. See Figure 2, left, for an example. In a sense, a standard Heegaard splitting is a
“stabilized double”. The following lemma makes this precise.

Lemma 2.5 Let .†IH1;H2/ be a .m; n/–standard Heegaard splitting with Hi ŠHg;p;f . Then

.†IH1;H2/D
� n

#
jD1

..†0/j I .H 01/
j ; .H 02/

j /
�

# .†00IH 001 ;H
00
2 /;

where .H 01/
j Š .H 02/

j ŠHpj ;fj for each j D 1; : : : ; n, and .†00IH 001 ;H
00
2 / is the standard genus g�p

Heegaard surface for #m.S1 �S2/.
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Proof Consider the n regions of † cut out by the n�1 separating curves that bound in each compression
body. After a sequence of handleslides, we can assume that all of the nonseparating curves of the ˛i are
contained in one of these regions. Once this is arranged, there is a separating curve ı in†n�.˛1[˛2/ that
cuts off a subsurface †00 such that †00 has only one boundary component (the curve ı) and g.†00/D g�p.
Since ı bounds in each of H1 and H2, we have that .†IH1;H2/D .†0IH 01;H

0
2/#ı .†00IH 001 ;H

00
2 /, such

that the latter summand is the standard splitting of #m.S1 �S2/, as claimed. The fact that the regions of
†0 cut out by the separating curves that bound in both handlebodies contain no other curves of the ˛i
means that these curves give the connected sum decomposition

.†0IH 01;H
0
2/D

� n

#
jD1

..†0/j I .H 01/
j ; .H 02/

j /
�

that is claimed.

Let H1 and H2 be two copies of Hg;p;f , and let h W @CH1! @CH2 be a diffeomorphism. Let Y be
the closed three-manifold obtained as the union of H1 and H2 along their boundaries such that @CH1
and @CH2 are identified via h and @�H1 and @�H2 are identified via the identity on @�Hg;p;f . The
manifold Y is called a Heegaard double of Hg;p;f along h, and was introduced by Gompf, Scharlemann,
and Thompson [13, Definition 4.4]. We say that a Heegaard double Y is .m; n/–standard if the Heegaard
splitting .†IH1;H2/ is .m; n/–standard. Let Yg;p;f denote the Heegaard double of a standard Heegaard
splitting whose compression bodies are Hg;p;f . The uniqueness of Yg;p;f is justified by the following
lemma, which is proved with slightly different terminology than that of [6, Corollary 14].

Lemma 2.6 Let M DH1[†H2 be a standard Heegaard splitting with Hi ŠHg;p;f . Then there is a
unique (up to isotopy rel-@) diffeomorphism Id.M;†/ W @�H1! @�H2 such that the identification space
M=x�Id.M;†/.x/, where x 2 @�H1, is diffeomorphic to the standard Heegaard double Yg;p;f .

We now identify the total space of a standard Heegaard double. Let Idpj ;fj W †pj ;fj ! †pj ;fj be
the identity map, and let MIdpj ;fj

be the total space of the abstract open-book .†pj ;fj ; Idpj ;fj /. See
Section 2.8, especially Example 2.16, for definitions and details regarding open-book decompositions.

Lemma 2.7 There is a decomposition

Yg;p;f D
� n

#
jD1

MIdpj ;fj

�
# .#m.S1 �S2//;

such that † restricts to a page in each of the first n summands and to a Heegaard surface in the last
summand. Moreover ,

MIdpj ;fj
Š #2pjCfj�1.S1 �S2/;

so Yg;p;f Š #k.S1 �S2/, with k D 2pCf �nCm.
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Figure 2: Left: a .1; 2/–standard Heegaard diagram for the standard Heegaard double Y4;.1;0/;.2;1/.
Right: a schematic showing the standard Heegaard double Y2;1;1, containing a .3; 4/–bridge
splitting for an unlink; the unlink has no flat components and four vertical components.

Proof Consider the abstract open-book .†pj ;fj ; Idpj ;fj /, and let MIdpj ;fj
denote the total space of

this abstract open-book. Pick two pages, P1 and P2, of the open-book decomposition of MIdpj ;fj
, and

consider the two lensed cobordisms cobounded thereby. Each of these pieces is a handlebody of genus
2pj C fj � 1, since it is diffeomorphic to Hpj ;fj . A collection of arcs decomposing the page into a disk
gives rise to a cut system for either handlebody, but these cut systems have the same boundary. The object
described is a genus 2pj Cfj � 1 (symmetric) Heegaard splitting for #2pjCfj�1.S1 �S2/. The rest of
the proof follows from Lemma 2.5.

Let Y be a standard Heegaard double. We consider the lensed compression bodies H1 and H2 as
embedded submanifolds of Y in the following way, which is a slight deviation from the way they naturally
embed in the Heegaard double. For i D 1; 2, let P ji denote the result of a slight isotopy of @�H

j
i into

Hi along the product structure induced locally by the lensed cobordism structure of Hi . Let Y j1 denote
the lensed product cobordism cobounded by P j1 and P j2 . In this way, we think of the Heegaard double
Y as divided into three regions: H1, H2, and

F
j Y

j
1 , each of whose connected components is a lensed

compression body. The union of H1 and H2 along their common boundary, which we denote by † is a
standard Heegaard splitting, and each Y j1 is the product lensed cobordism Hpj ;fj . See Figure 2, right, as
well as Figure 5, for a schematic illustration of this structure. We call this decomposition a (standard)
Heegaard-page structure and note that it is determined by the Heegaard splitting data .†;H1;H2/, by
Lemma 2.6.

2.5 Trivial tangles

A tangle is a pair .H;T/, where H is a compression body and T is a collection of neatly embedded
arcs in H , called strands. Let ˆ be a standard Morse function for H . After an ambient isotopy of T

rel-@, we can assume that ˆ restricts to T to give a Morse function ˆjT WT! Œ�1; 3� such that each local
maximum of T maps to 1 2 Œ�1; 3� and each local minimum maps to 0 2 Œ�1; 3�. We have arranged that
ˆ be self-indexing on H and when restricted to T.
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A strand � � T is called vertical if � has no local minimum or maximum with respect to ˆjT, and is
called flat if � has a single local extremum, which is a maximum. Note that vertical strands have one
boundary point in each of @CH and @�H , while flat strands have both boundary points in @CH . A tangle
T is called trivial if it is isotopic rel-@ to a tangle all of whose strands are vertical or flat. Such a tangle
with b flat strands and v vertical strands is called an .b; v/–tangle, with the condition that it be trivial
implicit in the terminology. More precisely, if H ŠHg;p;f , then we have an ordered partition of the
vertical strands determined by which component †pj ;bj of @�H Š†p;f contains the top-most endpoint
of each vertical strand, and we can more meticulously describe T as an .b; v/–tangle. See Figure 1 for
three examples of trivial tangles in lensed compression bodies.

Remark 2.8 In this paper, any tangle .H;T/ with @CH disconnected will not contain flat strands.
Moreover, such an H will always be a spread .Yi ; ˇi /Š .†p;f ;y/� I , with ˇi a geometric braid; see
below. Therefore, we will never partition the flat strands of T.

There is an obvious model tangle .Hg;p;f ;Tb;v/ that is a lensed cobordism from .†g;f ;x2bCv/ to
.†p;f ;yv/ in which the first 2b points of x2bCv are connected by slight push-ins of arcs in †g;f ,
and the final v rise vertically to †p;f , as prescribed by the standard height function on Hg;p;f and
the ordered partitions. The points x2bCv are called bridge points. A pair .H;T/ is determined up to
diffeomorphism by the parameters g, b, p, f , and v, and we refer to any tangle with these parameters as
a .g; bIp;f ; v/–tangle. Note that this diffeomorphism can be assumed to be supported near @CH and
can be understood as a braiding of the bridge points x2bCv. For this reason, we consider trivial tangles
up to isotopy rel-@, and we think of each such tangle as having a fixed identification of the subsurface
.†g;b;x2bCv/ of its boundary.

Let � be a strand of a trivial tangle .H;T/. Suppose first that � is flat. A bridge semidisk for � is an
embedded disk D� � H satisfying @D� D � [ ��, where �� is an arc in @CH with @�� D @� , and
D� \TD � . The arc �� is called a shadow for � . Now suppose that � is vertical. A bridge triangle for
� is an embedded disk D� �H satisfying @D� D � [ �� [ ��, where �� (resp. ��) is an arc in @CH
(resp. @�H ) with one endpoint coinciding with an endpoint of � and the other endpoint on @.@CH/,
coinciding with the other endpoint of �� (resp. ��), and D� \TD � .

Remark 2.9 The existence of a bridge triangle for a vertical strand � requires that @�H have boundary;
there is no notion of a bridge triangle for a vertical strand in a compression body cobounded by closed
surfaces. In this paper, if @CH is ever closed, H will be a handlebody and will not contain vertical
strands, so bridge semidisks and triangles will always exist for trivial tangles that we consider.

Given a trivial tangle .H;T/, a bridge disk system for T is a collection � of disjoint disks in H , each
component of which is a bridge semidisk or triangle for a strand of T, such that � contains precisely one
bridge semidisk or triangle for each strand of T.
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Lemma 2.10 Let .H;T/ be a trivial tangle such that either @CH has nonempty boundary or T contains
no vertical strands. Then there is a bridge disk system � for T.

Proof There is a diffeomorphism from .H;T/ to .Hg;p;f ;Tb;v/, as discussed above. This latter tangle
has an obvious bridge disk system: the “slight push-in” of each flat strand sweeps out a disjoint collection
of bridge semidisks for these strands, while the points x 2 x2bCv corresponding to vertical strands can
be connected to @†g;f via disjoint arcs, the vertical traces of which are disjoint bridge triangles for the
vertical strands. Pulling back this bridge system to .H;T/ using the inverse diffeomorphism completes
the proof.

We will refer to a .0; v/–tangle as a vertical v–tangle and to a .b; 0/–tangle as a flat b–tangle. In the
case that T is a vertical tangle in a spread H ŠHp;f , we call T a v–thread and call the pair .H;T/ a
.p;f ; v/–spread. Note that a .p; f; v/–spread is simply a lensed geometric (surface) braid; in particular,
a .0; 1; v/–spread is a lensed geometric braid .D2 � I; ˇ/.

2.6 Bridge splittings

Let K be a neatly embedded one-manifold in a three-manifold M . A bridge splitting of K is a decompo-
sition

.M;K/D .H1;T1/[.†;x/ .H2;T2/;

where .†IH1;H2/ is a Heegaard splitting for M and Ti �Hi is a trivial tangle. If T1 is a trivial .b; v/–
tangle, then we require that T2 be a trivial .b; v/–tangle, and we call the decomposition a .g;p;f I b; v/–
bridge splitting. A one-manifold K �M is in .b; v/–bridge position with respect to a Heegaard splitting
of M if K intersects the compression bodies Hi as a .b; v/–tangle.

Remark 2.11 As we have assumed a correspondence between the components of the @�Hi (see
Remark 2.4), we can require that the partitions of the vertical strands of the Ti respect this correspondence.
This is the sense in which both Ti are .b; v/–tangles. This will be important when we turn a bridge
splitting into a bridge-braid decomposition below.

More generally, we say that a bridge splitting is standard if the underlying Heegaard splitting

M DH1[†H2

is standard (as defined in Section 2.4 above) and there are collections of bridge semidisks �i for the
flat strands of the tangles Ti whose corresponding shadows T�i have the property that T�1 [x T�2 is an
embedded collection of polygonal arcs and curves. As a consequence, if .M;K/ admits a standard bridge
splitting, then K is the split union of an unlink (with one component corresponding to each polygonal
curve of shadow arcs) with a braid (with one strand corresponding to each polygonal arc of shadows
arcs). As described in Lemma 2.5, the ambient manifold M is a connected sum of copies of surfaces
cross intervals and copies of S1 �S2.
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Consider the special case that M is the trivial lensed cobordism between @�H1 and @�H2 and K �M
is a v–braid — ie isotopic rel-@ so that it intersects each level surface of the product lensed cobordism
transversely. (Note that the @�Hi are necessarily connected, since † always is.) If †D @CH1 defines a
standard bridge splitting of .M;K/, we refer to it as a b–perturbing of a v–braid.

Let .H1;T1/ and .H2;T2/ be two copies of the model trivial tangle .Hg;p;f ;Tb;v/, and let

h W @C.H1;T1/! @C.H2;T2/

be a diffeomorphism. Let .Y; L/ be the pair obtained as the union of .H1;T1/ and .H2;T2/, where the
boundaries @C.Hi ;Ti / are identified via h and the boundaries @�.Hi ;Ti / are identified via the identity
map of @�.Hg;p;f ;Tb;v/. We call the pair .Y; L/ a bridge double of .Hg;p;f ;Tb;v/ along h. Note that
a component of L can be referred to as flat or vertical depending on whether or not is disjoint from @�Hi .
We say that the bridge double is standard if:

(1) The bridge splitting .H1;T1/[.†;x/ .H2;T2/ is standard.

(2) L has exactly v vertical components. In other words, each component of L hits @�Hi exactly once
or not at all.

(3) L is an unlink.

Note that it follows that the vertical components of L are isotopic to meridians for the curve @†.

Let .Yg;p;f ; Lb;v/ denote the bridge double of a standard bridge splitting with .Hi ;Ti /Š .Hg;p;f ;Tb;v/.
The uniqueness of the standard bridge double .Yg;p;f ; Lb;v/ is given by the following lemma, which
generalizes Lemma 2.6 above.

Lemma 2.12 Let .M;K/D .H1;T1/[.†;x/ .H2;T2/ be a standard bridge splitting with .Hi ;Ti /Š
.Hg;p;f ;Tb;v/. Then there is a unique (up to isotopy rel-@) diffeomorphism

Id.M;K;†/ W @�.H1;T1/! @�.H2;T2/

such that the identification space .M;K/=x�Id.M;K;†/.x/, where x 2 @�.H1;T1/, is diffeomorphic to the
standard bridge double .Yg;p;f ; Lb;v/.

Proof Let .M;K/ be a standard bridge splitting. Suppose .Y; L/ is the bridge double obtained via the
gluing map Id.M;†/ W @�H1! @�H2, which is determined uniquely up to isotopy rel-@ by Lemma 2.6.
The claim that must be justified is that Id.M;†/ is unique up to isotopy rel-@ when considered as a map of
pairs @�.H1;y1/! @�.H2;y2/

Criterion (2) of a standard bridge double above states that K must close up to have v vertical components,
where v is the number of vertical strands in the splitting .M;K/. It follows that Id.M;†/ restricts to the
identity permutation as a map y1! y2 — ie the end of a vertical strand in y1 must get matched with the
end of the same strand in y2.
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Let .M;K/ı denote the pair obtained by deperturbing (in the classical, bridge-splitting-theoretic sense)
the vertical arcs of K so that they have no local extrema, then removing tubular neighborhoods of them.
Note that .M;K/ı is a standard bridge splitting (of the flat components of K) of type .g;p;f 0I b0; 0/.
The restriction Idı.M;†/ to .@�H1/ı is the identity on @.@�H1/ı, so we can apply Lemma 2.6 to conclude
that Idı.M;†/ is unique up to isotopy rel-@. Since Idı.M;†/ extends uniquely to a map Id.M;†;K/ of pairs,
as desired, we are done.

Finally, consider a standard bridge double .Yg;p;f ; Lb;v/, and recall the Heegaard-page structure on
Yg;p;f . This induces a structure on L that we call a bridge-braid structure. In particular,

(1) Ti D L\Hi is a .b; v/–tangle, and

(2) ˇ
j
1 D L\Y

j
1 is a vj –braid.

2.7 Disk-tangles

Let Zk denote the four-dimensional 1–handlebody \k.S1�B3/. Given nonnegative integers p, f , m, and
n such that kD 2pCf �1Cm and ordered partitions p and f of p and f of length n, there is a natural
way to think of Zk as a lensed cobordism from the spread Y1 DHp;f to the .m; n/–standard Heegaard
splitting .†IH1;H2/D .†g;f IHg;f ;Hg;f ). Starting with Y1�Œ0; 1�, attachmCn�1 four-dimensional
1–handles to Y1 � f1g so that the resulting four-manifold is connected. The three-manifold resulting
from this surgery on Y1 � f1g is H1 [†H2, and the induced structure on @Zk is that of the standard
Heegaard-page structure on YgIp;f . With this extra structure in mind, we denote this distinguished copy
by Zk by Zg;kIp;f .

A disk-tangle is a pair .Z;D/ whereZŠZk and D is a collection of neatly embedded disks. A disk-tangle
is called trivial if D can be isotoped rel-@ to lie in @Z.

Proposition 2.13 Let D and D0 be trivial disk-tangles in Z. If @DD @D0, then D and D0 are isotopic
rel-@ in Z.

Proof Then case when Z Š B4 is a special case of a more general result of Livingston [24], and is also
proved in [19]. See [28] for the general case.

A trivial disk-tangle .Z;D/ inherits extra structure along with Zg;kIp;f , since we can identify @D with
an unlink L in standard .b; v/–bridge position in YgIp;f . In this case, a disk D � D is called vertical
(resp. flat) if it corresponds to a vertical (resp. flat) component of L. With this extra structure in mind,
we call a trivial disk-tangle a .c; v/–disk-tangle and denote it by Dc;v, where c denotes the number of
flat components of D and v denotes the partition numbers of vertical components. Note that Dc;v is
a tangle of c C v disks. We call the pair .Zg;kIp;f ;DcIv/ a .g; k; cIp;f ; v/–disk-tangle. Note that
Proposition 2.13 respects this extra structure, since part of the hypothesis was that the two disk systems
have the same boundary. See Figure 3 for a schematic illustration.
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Figure 3: A schematic of the disk-tangle D1;2, which contains one flat component and two vertical
components. Note that the 3–component unlink on the boundary is in .3; 2/–bridge position with
respect to the standard Heegaard double Y0;0;1 for the 3–sphere.

The special structure on Zg;kIp;f described above induces a special Morse function ˆ W Z! R with
mCn� 1 critical points, all of which are index one. The next lemma characterizes trivial disk-tangles
with respect to this standard Morse function.

Lemma 2.14 Let Z DZg;kIp;f , and let D�Z be a collection of neatly embedded disks with @D\Y1

a v–thread. Suppose the restriction ˆD of ˆ to D has c critical points , each of which is index zero. Then
D is a .c; v/–disk-tangle for some ordered partition v of v D jDj � c.

Proof We parametrize ˆ WZ!R so that ˆ.Z/D Œ0; 1:5�, ˆ�1.0/D Y1 n �.P1[P2/,

ˆ�1.1:5/D .H1[†H2/ n �.P1[P2/;

and ˆ.x/D 0:5 for each critical point x 2Z of ˆ.

Let � denote the cores of the 1–handles of Z. By a codimension argument, we can assume, after a small
perturbation of ˆ that doesn’t introduce any new critical points, that D is disjoint from a neighborhood
�.�/[Y1 � Œ0; 1�. Thus, we can assume that ˆD.x/D 1:0 for any critical point x 2 D of ˆD.

First, note that 0� c � jDj; each connected component of D can have at most one minimum, since ˆD

has no higher-index critical points. Let fDigciD1 � D denote the subcollection of disks in D that contain
the index zero critical points of ˆD. We claim that D D

Sc
iD1Di is a .c; 0/–disk-tangle. We will now

proceed to construct the required boundary-parallelism.

Consider the moving picture of the intersection Dftg of D with the cross-section Zftg D ˆ�1.1C t /
for t 2 Œ0; 0:5�. This movie shows the birth of a c–component unlink L from c points at time t D 0,
followed by an ambient isotopy of L as t increases. Immediately after the birth, say t D �, we have that
the subdisks DŒ1;1C�� DD\ˆ�1.Œ1; 1C ��/ of D are clearly boundary-parallel to a spanning collection
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of disks E� for L� DDf1C�g. Now, we simply push this spanning collection of disks E� along through
the isotopy taking L� to @D. Because this isotopy is ambient, the traces of the disks of E� are disjoint,
thus they provide a boundary parallelism for D, as desired.

It remains to see that the collection D00 of disks in D containing no critical points of ˆD are also boundary
parallel. Note however, that they will not be boundary parallel into ˆ�1.1:5/, as before.

Let ˇ D D00 \ Y1; by hypothesis, .Y1; ˇ/ is a .p;f ; v/–spread, ie Y1 is a product lensed bordism (a
spread) Hp;f and ˇ is a vertical v–tangle (a v–thread) therein. Similar to before, we can assume that
D00 is disjoint from a small neighborhood of the cores of the 1–handles.

Since D00 contains no critical points, it is vertical in the sense that we can think of it as the trace of an
ambient isotopy of ˇ in Y1 as t increases from t D 0 to t D 0:5, followed by the trace of an ambient
isotopy of ˇ inH1[†H2 between t D 0:5 and t D 1:5. The change in the ambient space is not a problem,
since D00 is disjoint form the cores � of the 1–handles, hence these isotopies are supported away from
the four-dimensional critical points.

If � is any choice of bridge triangles for ˇ in Y1, then the trace of � under this isotopy gives a boundary-
parallelism of D00, as was argued above. We omit the details in this case.

Note that the assumption that ˇ be a thread was vital in the proof, as it gave the existence of �. If ˇ
contained knotted arcs, the vertical disk sitting over such an arc would not be boundary parallel. Similarly,
if ˇ contained closed components, the vertical trace would be an annulus, not a disk. The converse to the
lemma is immediate, hence it provides a characterization of trivial disk-tangles.

We next show how a standard bridge splitting can be uniquely extended to a disk-tangle. The following
lemma builds on portions of [6, Section 4].

Lemma 2.15 Let .M;K/ D .H1;T1/[.†;x/ .H2;T2/ be a standard .g;p;f I b; v/–bridge splitting.
There is a unique (up to diffeomorphism rel-@) pair .Z;D/, diffeomorphic to .Zg;kIp;f ;Dc;v/, such that
the bridge double structure on @.Z;D/ is the bridge double of .M;K/.

Proof By Lemma 2.12, there is a unique way to close .M;K/ up and obtain its bridge double .Y; L/. By
Laudenbach and Poénaru [23], there is a unique way to cap off Y Š #k.S1�S2/ with a copy of Z of Zk .
By Proposition 2.13, there is a unique way to cap off L with a collection D of trivial disks. Since these
choice are unique (up to diffeomorphism rel-@ and isotopy rel-@, respectively), the pair .Z;D/ inherit the
correct bridge double structure on its boundary, as desired.

2.8 Open-book decompositions and braidings of links

We follow Etnyre’s lecture notes [9] to formulate the definitions of this subsection. Let Y be a closed,
orientable three-manifold. An open-book decomposition of Y is a pair .B; �/, where B is a link in M
(called the binding) and � WY nB!S1 is a fibration such thatP�D��1.�/ is a noncompact surface (called
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the page) with @P� DB . Note that it is possible for a given link B to be the binding of nonisotopic (even
nondiffeomorphic) open-book decomposition of Y , so the projection data � is essential in determining
the decomposition.

An abstract open-book is a pair .P; �/, where P is an oriented, compact surface with boundary, and
� W P ! P is a diffeomorphism (called the monodromy) that is the identity on a collar neighborhood
of @P . An abstract open-book .P; �/ gives rise to a closed three-manifold, called the model manifold,
with an open-book decomposition in a straightforward way. Define

Y� D .P �� S
1/[

�G
j@P j

S1 �D2
�
;

where P �� S1 denotes the mapping torus of �, and Y� is formed from this mapping torus by capping
off each torus boundary component with a solid torus such that each p �� S1 gets capped off with a
meridional disk for each p 2 @P . (Note that p�� S1 D p�S1 by the condition on � near the boundary
of P .) Our convention is that P �� S1 D P � Œ0; 1�=.x;1/�.�.x/;0/ for all x 2 P .

If we let B� denote the cores of the solid tori used to form Y� , then we see that Y� nB� fibers over S1, so
we get an open-book decomposition .B� ; ��/ for Y� . Conversely, an open-book decomposition .B; �/ of
a three-manifoldM gives rise to an abstract open-book .P� ; ��/ in the obvious way such that .Y�� ; B�� /
is diffeomorphic to .M;B/.

We now recall an important example which appeared in Lemma 2.7.

Example 2.16 Consider the abstract open-book .P; �/, where P D†p;f is a compact surface of genus p
with f boundary components and � W P ! P is the identity map. The total space Y� of this abstract
open-book is diffeomorphic to #2pCf �1.S1 �S2/. To see this, simply note that the union of half of the
pages gives a handlebody of genus 2pCf �1; since the monodromy is the identity, Y� is the symmetric
double of this handlebody.

Harer described a set of moves that suffice to pass between open-book decompositions on a fixed three-
manifold [14]. These include Hopf stabilization and destabilization, as well as a certain double-twisting
operation, which was known to be necessary in order to change the homotopy class of the associated
plane field. (Harer’s calculus was recently refined in [30].) In fact, Giroux and Goodman proved that two
open-book decompositions on a fixed three-manifold have a common Hopf stabilization if and only if the
associated plane fields are homotopic [12]. For a trisection-theoretic account of this story, see [7].

Having introduced open-book decompositions, we now turn our attention to braided links. Suppose that
L� Y is a link and .B; �/ is an open-book decomposition on Y . We say that L is braided with respect
to .B; �/ if L intersects each page of the open-book transversely. We say that .Y;L/ is equipped with
the structure of an open-book braiding. The index of the braiding is the number of times that L hits a
given page. By the Alexander theorem [1] and the generalization due to Rudolph [31], any link can be
braided with respect to any open-book in any three-manifold.
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Figure 4: Markov stabilization, depicted as the banding of a braid to a meridian of the binding.

An abstract open-book braiding is a triple .P;y; �/, where P is an oriented, compact surface with
boundary, y � P is a collection of points, and � W .P;y/! .P;y/ is a diffeomorphism. As with abstract
open-books, this data gives rise to a manifold pair .Y� ;L�/, called the model open-book braiding of the
abstract open-book braiding, where Y� has an open-book structure with binding B� and projection ��
and L� is braided with respect to .B� ; ��/. More precisely,

.Y� ;L�/D .P;y/�� S
1
D .P;y/� Œ0; 1�=.x;0/�.�.x/;1/

for all x 2 P . Conversely, a braiding of L about .B; �/ gives rise in the obvious way to an abstract
open-book braiding .P� ; ��/ such that .Y�� ;L�� / is diffeomorphic to .Y;L/.

By the Markov theorem [25] or its generalization to closed 3–manifolds [32; 33], any two braidings of L

with respect to a fixed open-book decomposition of Y can be related by an isotopy that preserves the
braided structure, except at finitely many points in time at which the braiding is changed by a Markov
stabilization or destabilization. We think of a Markov stabilization in the following way. Let J be a
meridian for a component of the binding B of the open-book decomposition on Y , and let b be a band
connecting L to J such that the core of b is contained in a page of the open-book decomposition and such
that the link L0 DLb resulting from the resolution of the band is braided about .B; �/. We say that L0 is
obtained from L via a Markov stabilization, and we call the inverse operation Markov destabilization.
(Markov destabilization can be thought of as attaching a vertical band to L0 such that resolving the band
has the effect of splitting off from L0 a meridian for a binding component.) See Figure 4.

Suppose that Y D Y 1 t � � � t Y n is the disjoint union of closed three-manifolds such that each Y j is
equipped with an open-book decomposition .Bj ; �j /. Suppose that LD L1 t � � �Ln is a link such that
Y j � Y j is braided about .Bj ; �j /. We say that L has multiindex vD .v1; : : : ; vn/ if Lj has index vj .
We allow the possibility that Lj D∅ for any given j .

Remark 2.17 If Y is oriented, and we pick orientations on L and on a page P of .B; �/, then we can
associate a sign to each point of L\P . By definition, if L is a knot, then each such point will have
identical sign; more generally, connected components of L have this property. If the orientations of the
points L\P all agree, then we say that the braiding is coherently oriented. If the orientations of these
points disagree across components of L, then we say that the braiding is incoherently oriented.
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Our reason for considering incoherently oriented braidings is that sometimes a bridge trisection of a
surface will induce a braiding of the boundary link that is incoherently oriented once the surface is
oriented. A simple example of this, the annulus bounded by the .2; 2n/–torus link, will be explored in
Examples 7.15 and 7.17. Even though some bridge trisections induce incoherently oriented braidings
on the boundary link, it is always possible to find a bridge trisection of a surface such that the induced
braiding is coherently oriented.

2.9 Formal definitions

Finally, we draw on the conventions laid out above to give formal definitions.

Definition 2.18 Let X be an orientable, connected four-manifold, and let

Y D @X D Y 1 t � � � tY n;

where Y j is a connected component of @X for each j D 1; : : : ; n. Let g, k�, p, and f be nonnegative
integers, and let k, p, and f be ordered partitions of type .k�; 3/, .p; n/, and .b; n/C, respectively.

A .g;kIp;f /–trisection T of X is a decomposition X DZ1[Z2[Z3 such that, for all j D 1; : : : ; n
and all i 2 Z3,

(1) Zi ŠZg;ki Ip;f ,

(2) Zi \ZiC1 ŠHgIp;f ,

(3) Z1\Z2\Z3 Š†g;b , and

(4) Zi \Y
j ŠHp;f .

The four-dimensional pieces Zi are called sectors, the three-dimensional pieces Hi D Zi \Zi�1 are
called arms, and the central surface †D Z1 \Z2 \Z3 is called the core. If k1 D k2 D k3 D k, then
T is described as a .g; kIp;f /–trisection and is called balanced. Otherwise, T is called unbalanced.
Similarly, if either of the ordered partitions p and f are balanced, we replace these parameters with
the integers p=n and/or f=n, respectively. The parameter g is called the genus of T . The surfaces
P
j
i D Hi \ Y

j are called pages, and their union is denoted by Pi . The lensed product cobordisms
Y
j
i DZi \Y

j are called spreads, and their union is denoted by Yi . The links Bj D†\Y j are called
bindings, and their union is B D @†.

If X is oriented, we require that the orientation on Zi induces the oriented decompositions

@Zi DHi [Yi [HiC1; @Hi D†[B Pi ; @Yi D Pi [B PiC1:

See Figure 5 (below) for a schematic illustrating these conventions.

Remarks 2.19 (1) If X is closed, then nD 0, Y D∅, and T is a trisection as originally introduced
by Gay and Kirby [10] and generalized slightly in [26].
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(2) If X has a single boundary component, then nD 1, and T is a relative trisection as first described
in [10] and later developed in [4], where gluing of such objects was studied, and in [6], where
the diagrammatic aspect to the theory was introduced. The general case of multiple boundary
components was recently developed in [5].

(3) Since Y j D Y j1 [ Y
j
2 [ Y

j
3 , with each Y ji Š Hpj ;bj , it follows that Y j admits an open-book

decomposition where P ji is a page for each i 2 Z3 and Bj is the binding. This open-book
decomposition is determined by T , and the monodromy can be explicitly calculated from a relative
trisection diagram [6].

(4) The triple .†; Pi ; PiC1/ defines the standard Heegaard double structure on @Zi Š YgIp;f . It
follows from Lemma 2.7 that ki D 2pCf �nCmi , where .†IHi ;HiC1/ is an .mi ; n/–standard
Heegaard splitting. We call mi the interior complexity of Zi . Notice that g is bounded below by
mi and p, but not by f nor ki .

Definition 2.20 Let T be a trisection of a four-manifold X . Let F be a neatly embedded surface in X .
Let b, c�, and v be nonnegative integers, and let c and v be ordered partitions of type .c�; 3/ and .v; n/,
respectively. The surface F is in .b; cI v/–bridge trisected position with respect to T (or is .b; cI v/–bridge
trisected with respect to T ) if, for all i 2 Z3,

(1) Di DZi \F is a trivial .ci I v/–disk-tangle in Zi , and

(2) Ti DHi \F is a trivial .bI v/–tangle in Hi .

The disk components of the Di are called patches, and the Ti are called seams. Let

LD @FD L1 t � � � tLn;

where Lj DL\Y j is the link representing the boundary components of F that lie in Y j . The pieces
ˇ
j
i D Lj \Zi comprising the Li are called threads.

If F is oriented, we require that the induced orientation of Di induces the oriented decomposition

@Di D Ti [ˇi [TiC1:

See Figure 5 (below) for a schematic illustrating these conventions.

The induced decomposition TF given by

.X;F/D .Z1;D1/[ .Z2;D2/[ .Z3;D3/

is called a .g;k; b; cIp;f ; v/–bridge trisection of F (or of the pair .X;F/). If T is balanced and ci D c
for each i 2 Z3, then TF is described as a .g; k; b; cIp;f ; v/–bridge trisection and is called balanced.
Otherwise, TF is called unbalanced. Similarly, if the partition v is balanced, we replace this parameter
with the integer v=n. The parameter b is called the bridge number of TF.
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Remarks 2.21 (1) If X is a closed four-manifold, then nD 0, LD∅, and F is a closed surface in X .
If g D 0, we recover the notion of bridge trisections originally introduced in [27], while the more
general case of arbitrary g is treated in in [28].

(2) If L\ Y j D ∅ for some j D 1; : : : ; n, then Lj D ∅. Equivalently, vj D 0. If Lj is not empty,
then

Lj D ˇ
j
1 [ˇ

j
2 [ˇ

j
3 :

If follows that Lj is braided with index vj with respect to the open-book decomposition .Bj ; P ji /
on Y j induced by T .

(3) The link Li D @Di is in .b; v/–bridge position with respect to the standard Heegaard double
structure on @Zi .

(4) The surface F has a cellular decomposition consisting of .2bC 4v/ 0–cells, 3v of which lie in the
pages of @X ; .3bC 6v/ 1–cells, 3v of which lie in the spreads of @X ; and .c1C c2C c3C 3v/
2–cells, 3v of which are vertical patches. It follows that the Euler characteristic of F is given as

�.F/D c1C c2C c3C v� b:

(5) Note that ci � b, but that v is independent of b and the ci .

We conclude this section with a key fact about bridge trisections. We refer to the union

.H1;T2/[ .H2;T2/[ .H3;T3/

as the spine of the bridge trisection T . Two bridge trisections T and T 0 for pairs .X;F/ and .X;F0/ are
diffeomorphic if there is a diffeomorphism ‰ W .X;F/! .X 0;F0/ such that  .Zi ;Di /D .Z0i ;D

0
i / for all

i 2 Z3. We consider spines up to diffeomorphism, and we note that such diffeomorphisms may induce
braiding of the Ti near the Pi .

Proposition 2.22 Two bridge trisections are diffeomorphic if and only if their spines are diffeomorphic.

Proof If ‰ is a diffeomorphism of bridge trisections T and T 0, then the restriction of ‰ to the spine of T

is a diffeomorphism onto the spine of T 0. Conversely, suppose ‰ is a diffeomorphism from the spine of T

to the spine of T 0— ie ‰.Hi ;Ti /D .H 0i ;T
0
i / for all i 2 Z3. By Lemma 2.15, ‰ there is an extension

of ‰ across .Zi ;Di / that is uniquely determined up to isotopy fixing .H1;Ti /[.†;x/ .HiC1;TiC1/ for
each i 2 Z3. It follows that ‰ extends to a diffeomorphism bridge trisections, as desired.

In light of this, we find that the four-dimensional data of a bridge trisection is determined by the three-
dimensional data of its spine, a fact that will allow for the diagrammatic development of the theory in
Sections 4 and 5.

Corollary 2.23 A bridge trisection is determined uniquely by its spine.
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3 The four-ball setting

In this section, we restrict our attention to the study of surfaces in the four-ball. Moreover, we work
relative to the standard genus zero trisection. These restrictions allow for a cleaner exposition than the
general framework of Section 2 and give rise to a new diagrammatic theory for surfaces in this important
setting.

3.1 Preliminaries and a precise definition

Here, we revisit the objects and notation introduced in Section 2 with the setting ofB4 in mind, culminating
in a precise definition of a bridge trisection of a surface in B4.

LetH denote the three-ball, and let B denote an equatorial curve on @H , which induces the decomposition

@H D @CH [B @�H

of the boundary sphere into two hemispheres. We think of H as being swept out by disks: smoothly
isotope @CH through H to @�H . (Compare this description of H with the notion of a lensed cobordism
from Section 2.2 and the development for a general compression body in Section 2.3.)

A trivial tangle is a pair .H;T/ such that H is a three-ball and T�H is a neatly embedded 1–manifold
with the property that T can be isotoped until the restriction ˆT of the above Morse function to T has no
minimum and at most one maximum on each component of T. In other words, each component of T is a
neatly embedded arc in H that is either vertical (with respect to the fibering of H by disks) or parallel
into @CH . The latter arcs are called flat. We consider trivial tangles up to isotopy rel-@. If T has v
vertical strands and b flat strands, we call the pair .H;T/ a .b; v/–tangle. This is a special case of the
trivial tangles discussed in Section 2.5.

Let H1 and H2 be three-balls, and consider the union H1 [† H2, where † D @CH1 D @CH2. We
consider this union of as a subset of the three-sphere Y so that B D @† is an unknot and †, @�H1, and
@�H2 are all disjoint disk fibers meeting at B . Let Y1 denote

Y n Int.H1[†H2/;

and notice that Y1 is simply an interval’s worth of disk fibers for B , just like the Hi . We let Y denote
the three-sphere with this extra structure, which we call the standard Heegaard double (see Section 2.4).
Note that B can be thought of as the (unknotted) binding of an open-book decomposition of S3 with disk
page, with the pieces H1, H2, and Y1 intersecting pairwise at pages and representing themselves lensed
product cobordisms between these pages.

An unlink L � Y is in .b; v/–bridge position with respect the standard Heegaard double structure if
L\Hi is a .b; v/–tangle, L is transverse to the disk fibers of Y1, and each component of L intersects
Y1 in at most one arc. The v components of L that intersect Y1 are called vertical, while the other b
components are called flat.
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†

T2

H2
P2

T1
H1 P1

ˇ1

Y1

Figure 5: A schematic illustration of a standard Heegaard double, with orientation conventions
for the constituent pieces of @Z1 indicated.

Let Z denote the four-ball, with @Z D Y regarded as the standard Heegaard double. A trivial disk-tangle
is a pair .Z;D/ such that Z is a four-ball and D is a collection of neatly embedded disks, each of
which is parallel into @Z. Note that the boundary @D is an unlink. If @D is in .b; v/–bridge position in
Y D @Z, then the disk components of D are called vertical and flat in accordance with their boundaries.
A .c; v/–disk-tangle is a trivial disk-tangle with c flat components and v vertical components.

Definition 3.1 Let F be a neatly embedded surface in B4, and let T0 be the standard genus zero trisection
of B4. Let b and v be nonnegative integers, and let c D .c1; c2; c3/ be an ordered triple of nonnegative
integers. The surface F is in .b; cI v/–bridge trisected position with respect to T0 (or is .b; cI v/–bridge
trisected with respect to T0) if, for all i 2 Z3,

(1) Di DZi \F is a trivial .ci ; v/–disk-tangle in the four-ball Zi , and

(2) Ti DHi \F is a trivial .b; v/–tangle in the three-ball Hi .

The disk components of the Di are called patches, and the Ti are called seams. Let LD @F. The braid
pieces ˇi D L\Zi are called threads.

If F is oriented, we require that the induced orientation of Di induces the oriented decomposition

@Di D Ti [ˇi [TiC1:

The induced decomposition TF given by

.X;F/D .Z1;D1/[ .Z2;D2/[ .Z3;D3/

is called a .b; c; v/–bridge trisection of F (or of the pair .X;F/). If TF is balanced and c1D c2D c3D c,
then TF is a .b; c; v/–bridge trisection and is called balanced. Otherwise, TF is called unbalanced.

3.2 Band presentations

Let M be a three-manifold, and let J be a neatly embedded one-manifold in M . Let b be a copy of
I � I embedded in M , and denote by @1b and @2b the portions of @b corresponding to I � f�1; 1g and
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f�1; 1g� I , respectively. We call such a b a band for J if Int.b/�M nJ and @b\J D @1b. The arc of
b corresponding to f0g � I is called the core of b.

Let Jb denote the one-manifold obtained by resolving the band b,

Jb D .J n @1b/[ @2b:

The band b for J gives rise to a dual band b� that is a band for Jb, so @1b�D @2b and @2b�D @1b. Note
that, as embedded squares in M , we have bD b�, though their cores are perpendicular. More generally,
given a collection b of disjoint bands for J , we denote by Jb the resolution of all the bands in b. As
above, the collection b� of dual bands is a collection of bands for Jb.

Definition 3.2 (band presentation) A band presentation is a 2–complex in S3 defined by a triple
.L; U; b/ as follows:

(1) L� S3 is a link;

(2) U is a split unlink in S3 n �.L/; and

(3) b is a collection of bands for LtU such that U 0 D .LtU/b is an unlink.

If U is the empty link, then we write .L; b/ and call the encoded 2–complex in S3 a ribbon presentation.

We consider two band presentations to be equivalent if they are ambient isotopic as 2–complexes in S3.
Given a fixed link L � S3, two band presentations .L; U1; b1/ and .L; U2; b2/ are equivalent rel-L if
they are equivalent via an ambient isotopy that preserves L setwise. (In other words, L is fixed, although
the attaching regions of b are allowed to move along L.)

Band presentations encode smooth, compact, neatly embedded surfaces in B4 in a standard way. Before
explaining this, we first fix some conventions that will be useful later. (Here, we follow standard
conventions, as in [20; 21; 27; 28].)

Let h WB4! Œ0; 4� be a standard Morse function on B4 — ie h has a single critical point, which is definite
of index zero and given by h�1.0/, while h�1.4/ D @B4 D S3. For any compact submanifold X of
B4 and any 0 � t < s � 4, let XŒt;s� denote X \ h�1.Œt; s�/ and let Xftg D X \ h�1.t/. For example,
B4
Œt;s�
D h�1Œt; s�. Similarly, for any compact submanifold Y of B4

ftg
and any 0� r < s � 4, let Y Œr; s�

denote the vertical cylinder obtained by pushing Y along the gradient flow across the height interval Œr; s�,
which we call a gradient product. We extend these notions in the obvious way to open intervals and
singletons in Œ0; 4�.

Now we will show how, given a band presentation .L; U; b/, we can construct the realizing surface
F.L;U;b/: a neatly embedded surface in B4 with boundary L. Start by considering .L; U; b/ as 2–complex
in B4

f2g
Š S3, and consider the surface F with the properties

(1) F.3;4� D L.3; 4�;

(2) Ff3g D Lf3g tD, where D is a collection of spanning disks for the unlink U f3g � B4
f3g
Š S3;
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(3) F.2;3/ D .LtU/.2; 3/;

(4) Ff2g D .LtU/[ b;

(5) F.1;2/ D U
0.1; 2/;

(6) Ff1g DD
0, where D0 is a collection of spanning disks for the unlink U 0 � B4

f1g
Š S3; and

(7) FŒ0;1/ D∅.

Note that t represents the split union, and we assume that D is contained in a three-ball B that is
disjoint from Lf3g. Any two such choices of spanning disks D and D0 are isotopic after perturbation
into B.3; 3C �/ and B4

.1;1��/
, respectively, by Proposition 2.13. Note also that @FD F\B4

f4g
D Lf4g.

Proposition 3.3 Every neatly embedded surface F with @FDL is isotopic rel-@ to a realizing surface
F.L;U;b/ for some band presentation .L; U; b/. If F has a handle-decomposition with respect to the
standard Morse function on B4 consisting of c1 cups , n bands , and c3 caps , then .L; U; b/ can be
assumed to satisfy jU j D c3, jbj D n, and jU 0j D c1.

Proof Given F, we can assume after a minor perturbation that the restriction hF of a standard height
function h W B4 ! Œ0; 4� is Morse. After reparametrizing the codomain of h, we can assume that the
critical points of hF are contained in h�1..1:5; 2:5//. For each index zero critical point x of hF, we
choose a vertical strand ! connecting x to B4

f1g
. (Here, vertical means that !ftg is a point or empty for

each t 2 Œ1; 2:5�.) By a codimension count, ! is disjoint from F, except at x. We can use a small regular
neighborhood of ! to pull x down to B4

f1g
. Repeating, we can assume that the index zero critical points

of hF lie in B4
f1g

. By a similar argument, we achieve that the index two critical points of hF lie in B4
f3g

and that the index one critical points of hF lie in B4
f2g

.

Next, we perform the standard flattening of the critical points: for each critical point x of index i , find a
small disk neighborhood N of x in F, and isotope F so that N lies flat in B4

fiC1g
. Near critical points of

index zero or two, F now resembles a flat-topped or flat-bottomed cylinder; for index one critical points,
N is now a flat square. Let b0 denote the union of the flat, square neighborhoods of the index one critical
points in B4

f2g
.

So far, we have achieved properties (2), (4), (6), and (7) of a realizing surface. Properties (1), (3), and (5)
say that F should be a gradient product on the intervals .3; 4�, .2; 3/, and .1; 2/, respectively. The products
F.3;4� and L.3; 4� (for example) agree at Ff4g DLf4g, but may disagree in B4

ftg
for t 2 .3; 4/. This issue

can be addressed by a “combing-out” process.

For each t 2 Œ1; 4�, we can choose ambient isotopies Gt W Œ0; 1��B4ftg! B4
ftg

such that

(1) G4.s; x/D x for all s 2 Œ0; 1� and x 2 B4
f4g

;

(2) Gt .0; x/D x for all t 2 Œ1; 4� and x 2 B4
ftg

;

(3) Gt .1;Fftg/D Lftg for all t 2 .3; 4�, where we now let LD Ff4g;
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Figure 6: A band presentation for the punctured spun trefoil, considered as a neatly embedded
disk in B4 with unknotted boundary.

(4) Gt .1;Fftg/D .LtU/ftg for all t 2 .2; 3/, where we now let LtU DG3.Ff3g n IntD/;

(5) Gt .1;Fftg/D U
0ftg for all t 2 .1; 2/, where we now let U 0 DG2.@FŒ0;2//; and

(6) Gt is smoothly varying in t .

After applying the family Gt of ambient isotopies to FŒ1;4�, we have properties (1), (3), and (5), as desired.
However, the ambient isotopies Gt have now altered Fftg for t D 1; 2; 3. For example, the disks D and
D0 have been isotoped around in their respective level sets; but, clearly, properties (2), (4), (6), and (7)
are still satisfied. We remark that, if desired, we can choose Gt so that

(a) the disks of D end up contained in small, disjoint 3–balls and either

(b) the disks of D0 have the same property or

(c) the bands b have the same property.

However, we cannot always arrange (a), (b), and (c) if we want F.1;2/ to be a gradient product.

With a slight abuse of notation, we now let LDLf2g, U D U f2g, and bDG2.b
0/. (The only abuse is

which level set of the now-gradient-product portion LŒ2; 4� of F should be denoted by L.) In the end, we
have that F is the realizing surface of the band presentation .L; U; b/.

With regards to the second claim of the proposition, assume that F has c1 cups, n bands, and c3 caps
once it is in Morse position. Each cap gives rise to a component of U , while each cup gives rise to a
component of U 0. The numbers of bands, cups, and caps are constant throughout the proof.

Examples of a band presentations are shown below in Figures 8(a), 10(a), and 13(g). However, each of
these is a ribbon presentation. Throughout the rest of the paper, we will work almost exclusively with
ribbon presentations. To emphasize the generality of Definition 3.2, we give in Figure 6 a nonribbon
band presentation, where the black unknot is L and the orange unknot is U . Note that a nonribbon band
presentation .L; U; b/ for a surface F can always be converted to a ribbon presentation .L0; b/ for a
surface F0 by setting L0 D LtU . The ribbon surface F0 is obtained from the nonribbon surface F by
puncturing at each maxima and dragging the resulting unlink to the boundary.
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3.3 Bridge-braiding band presentations

Recall the standard Heegaard-double decomposition Y D Y0;0;1 of S3 that was introduced in Section 2.4
and revisited in Section 3.1, which is a decomposition of S3 into three trivial lensed cobordisms (three-
balls), H1, H3, and Y3, which meet along disk pages H1\H3 D† and Hi \Y3 D Pi whose boundary
is the unknotted braid axis B in S3. The choice to use H3 instead of H2 will ensure that the labelings of
our pieces agree with our conventions for the labeling of the pieces of a bridge trisection, as in the proof
of Proposition 3.12 below.

Definition 3.4 (bridge-braided) A band presentation .L; U; b/, considered with respect to the standard
Heegaard-page decomposition Y0;0;1 of S3, is called .b; cI v/–bridge-braided if

(1) ˇ3 D L\Y3 is a v–braid;

(2) L\ .H1[†H3/ is a b0–perturbing of a v–braid;

(3) U is in b00–bridge position with respect to †;

(4) b\† is precisely the cores y� of b, which are embedded in †;

(5) there is a bridge system � for the trivial tangle T3 DH3\ .L[U/ whose shadows �� have the
property that ��[y� is a collection of embedded arcs in †; and

(6) U 0 D .L [ U/b is a .c1Cv/–component unlink that is in standard .b; v/–bridge position with
respect to Y0;0;1 (hence, U 0 consists of c1 flat components and v vertical components).

Here, bD b0Cb00, c3D jU j, c2D b�jbj, and c1D jU 0j�v. Let Ǒ denote the index v braiding of L given
by ˇ3[T1[T3. In reference to this added structure, we denote the bridge-braided band presentation by
. Ǒ; U; b/. If U D∅, so .L; b/ is a ribbon presentation, we denote the corresponding bridge-braiding by
. Ǒ; b/.

We say that a band in b is dualized by the bridge disk in � whose shadow is adjacent to the band’s core
in the embedded polygonal arc.

Proposition 3.5 Let F�B4 be a surface with @FDL, and let Ǒ be an index v braiding of L. There is a
bridge-braided band presentation . Ǒ; U; b/ such that FDF. Ǒ;U;b/. If F has a handle-decomposition with
respect to the standard Morse function on B4 consisting of c1 cups , n bands , and c3 caps , then . Ǒ; U; b/
can be assumed to be

�
b; .c1; b�.nCv/; c3/I v

�
–bridge-braided for some b 2N.

Proof Consider F � B4 with @F D L. By Proposition 3.3, we can assume (after an isotopy rel-@)
that F D F.L;U;b/ for some band presentation .L; U; b0/. We assume that jU j D c3, jb0j D n, and
j.LtU/b0 j D c1. By Alexander’s theorem [1], there is an ambient isotopy G4 W I �B4f4g! B4

f4g
taking

@F to Ǒ. As in the proof of Proposition 3.3, there is a family Gt of ambient isotopies extending G4
across B4. This results in the “combing-out” of Alexander’s isotopy G4, with the final effect that F is the
realizing surface of the (not-yet-bridge-braided) band presentation . Ǒ; U; b0/. Henceforth, we consider
the 2–complex corresponding to . Ǒ; U; b0/ to be living in B4

f2g
, as in Proposition 3.3.
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We have already obtained properties (1) and (2) towards a bridge-braided band presentation; although,
presently b0 D 0. (This will change automatically once we begin perturbing the bridge surface † relative
to Ǒ and U .) By an ambient isotopy of B4

f2g
that is the identity in a neighborhood of Ǒ, we can move

U to lie in bridge position with respect to †, realizing property (3). (Again, the bridge index b00 of this
unlink will change during what follows.) Since this ambient isotopy was supported away from Ǒ it can
be combed-out (above and below) via a family of isotopies that are supported away from the gradient
product ǑŒ2; 4�; so F is still the realizing surface.

Next, after an ambient isotopy that fixes Ǒ tU setwise (and pointwise near †), we can arrange that
b0 lies in H1 [†H3. (Think of the necessity of sliding the ends of b0 along ˇ3 to extract it from Y3,
while isotoping freely the unattached portion of b0 to the same end.) This time, we need only comb-out
towards h�1.0/. Using the obvious Morse function associated to .H1 [†H3/ n �.B/, we can flow b0,
in the complement of Ǒ tU , so that the cores of the bands lie as an immersed collection of arcs y in
† n �.x/. At this point, we can perturb the bridge surface † relative to Ǒ tU to arrange that the cores
y be embedded in †. For details as to how this is achieved, we refer the reader to Figure 10 (and the
corresponding discussion starting on page 17) of [27]. Now that the cores y� of b0 are embedded in †,
we can further perturb † relative to Ǒ tU (as in Figure 11 of [27]) to achieve that b0\† is precisely the
cores of b0. Thus, we have that the bands b0 satisfy property (4). A further perturbation of † relative to
Ǒ tU produces, for each band � of b0, a dualizing bridge disk �� , as required by property (5). (See

Figure 12 of [27].)

However, at this point it is possible that the c1–component unlink U 00D . Ǒ tU/b0 is not in standard .b; v/–
bridge position; more precisely, it is possible that components of U 00 intersect Y3 in more than one strand.
On the other hand, we automatically have that U 00\Y3 is a v–braid, since the band resolutions changing
L[U into U 00 were supported away from Y3. Moreover, we know that U 00\Hi is a .b; v/–tangle; this
follows from the proof of [27, Lemma 3.1].

Thus, we must modify U 00 in order to obtain an unlink in standard position. To do so, we will produce a
new collection b00 of bands such that U 0 D U 00b00 is a .c1Cv/–component unlink in .b; v/–bridge position.
We call the bands b00 helper bands. We will then let bD b0 t b00, and the proof will be complete.

Since .Y3; ˇ3/ is a v–braid, there is a collection of bridge triangles � for ˇ3. Let ! D�\ .P1[B P3/.
Let b00 denote the collection of v bands whose core are the arcs ! and that are framed by the two-sphere
P1[B P3. By a minor isotopy that fixes U 00 setwise (and pointwise away from a neighborhood of @!),
we consider b00 as lying in the interior of H1[†H3. Thus, b00 is a collection of bands for T1[x T3. See
Figure 7 for two simple examples.

Let U 0 D U 00b00 . Let J denote the components of U 0 containing the strands of ˇ3. Since the helper bands
b00 were created from the bridge triangles of �, we find that J bounds a collection of v disjoint meridional
disks forB . In particular, J is a v–component unlink in v–braid position with respect toB . LetKDU 0nJ ,
and note that K is isotopic (disregarding the Heegaard double structure) to the unlink U 00. It follows that
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Figure 7: Adding extra bands to ensure that U 0 is in standard .b; v/–bridge position.

K is a c1–component unlink in bridge position with respect to †. Therefore, U 0 is a .c1Cv/–component
unlink in standard .b; v/–bridge position, as required by property (6) of Definition 3.4.

Now, to wrap up the construction, we let b D b0 [ b00. While we have arranged the bands of b0 are in
the right position with respect to the Heegaard splitting, we must now repeat the process of perturbing
the bridge splitting in order to level the helper bands b00. The end result is that the bands of b satisfy
properties (4) and (5) of Definition 3.4. In the process, we have not changed the fact that properties
(1)–(3) and (6) are satisfied, though we may have further increased the parameters b0 and b00 (and, thus,
b D b0C b00) during this latest bout of perturbing.

We complete the proof by noting that jU j D c3, jU 0j D c1C v, and jbj D nC v.

Remark 3.6 A key technical step in the proof of Proposition 3.5 was the addition of the so-called helper
bands b00 to the original set b0 of bands that were necessary to ensure that U 0 was in standard position. In
the proof, b00 consisted of v bands; in practice, one can make do with a subset of these v bands. This can
be seen in the two simple examples of Figure 7, where the addition of only one band (in each example)
suffices to achieve standard bridge position. In Figure 7, left, the addition of the single band shown
transforms an unknot component of U 00 that is in 2–braid position into a pair of 1–braids (one of which is
perturbed) in the link U 0. In Figure 7, right, an unknot component that is not braided at all is transformed
to the same result. In each of these examples, the addition of a second band corresponding to the second
arc of ! would be superfluous.

From a Morse-theoretic perspective, the helper bands correspond to canceling pairs of minima and
saddles: the minima are the meridional disks bounded by J . Using more bands from b00 than is strictly
necessary results in a surface with more minima (and bands) than are actually required to achieve the
desired bridge-braided band presentation. Below, when we convert the bridge-braided band presentation
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to a bridge trisection, we will see that the superfluous bands and minima have the effect that the bridge
trisection produced is perturbed — see Section 9. Another way of thinking about the helper bands is that
they ensure that the trivial disk-tangle D1 in the resulting bridge trisection has enough vertical patches.

We require that each vertical component of U 0 intersect Y3 in a single thread so that the corresponding
patch will be vertical. If some wound twice around as a braid, it would bound a patch in Z3 that is not
vertical with respect to the relevant Morse function on Z3; see the proof of Proposition 3.12 below.

Before proving that a bridge-braided band presentation can be converted to a bridge trisection, we pause
to give a few examples illustrating the process of converting a band presentation into a bridge-braided
band presentation.

Example 3.7 (figure-8 knot Seifert surface) Figure 8(a) shows a band presentation for the genus one
Seifert surface for the figure-8 knot, together with a gray dot representing an unknotted curve about which
the knot will be braided; this braiding is shown in Figure 8(b). Note that the resolution of the bands at
this point would yield a unknot (denoted U 00 in the proof of Proposition 3.5) that is in 3–braid position.
Thus, at least two helper bands are need. In Figure 8(c) we have attached three helper bands, as described
in the proof of Proposition 3.5. Note that the cores of these bands are simultaneously parallel to the arcs
one would attach to form the braid closure, and the disks exhibiting this parallelism correspond to the
bridge triangles in the proof. In Figure 8(d), all five bands have been leveled so that they are framed by
the bridge sphere, intersecting it only in their cores. In addition, each band is dualized by a bridge disk
for T3. Three of these bridge disks are obvious. The remaining two are only slightly harder to visualize;
one can choose relatively simple disks corresponding to any two of the three remaining flat arcs.

Figure 8(e) shows a tri-plane diagram for the bridge trisection that can be obtained from the bridge-braided
band presentation given in Figure 8(d) according to Proposition 3.12. (See Section 4 for precise details
regarding tri-plane diagrams.) Figure 8(f) shows the pairwise unions of the seams of this bridge trisection.
Relevant to the present discussion is the fact that the second two unions each contain a closed, unknotted
component. The fact that the red-blue union contains such a component is related to the fact that we
chose to use three helper bands, when two would suffice. The fact that the green-blue union contains
such a component is related to the fact that the bridge splitting in Figure 8(d) is excessively perturbed.
We leave it as an exercise to the reader to deperturb the bridge splitting of Figure 8(d) to obtain a simpler
bridge-braided band presentation.

Example 3.8 (figure-8 knot Seifert surface redux) As discussed in Remark 3.6, it is often not necessary
to append v helper bands. The frames of Figure 9 are analogous to those of Figure 8, with the main change
being that only two of the three helper bands are utilized. The two innermost bands from Figure 8(c)
have been chosen, and they have each been slid once over the original bands from Figure 9(b) to make
the subsequent picture slightly simpler.
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(a)
(b)

(c)
(d)

(e)

(f)

Figure 8: Top row: the process of converting a band presentation for the genus one Seifert
surface for the figure-8 knot into a bridge-braided band presentation. Middle row: a tri-plane
diagram corresponding to the bridge-braided band presentation of (d). See Figure 9 for a second
instantiation of this example.

Since fewer bands are included, the bridge splitting required to level and dualize them is simpler. In this
case, the perturbing in Figure 9(d) is minimal. In light of these variations, we see in Figure 9(f) that the
pairwise unions of the seams of the bridge trisection contain no closed components, implying the bridge
trisection is not perturbed — see Section 9.

Example 3.9 (stevedore knot ribbon disk) Figure 10(a) shows a band presentation for a ribbon disk
for the stevedore knot, together with a gray dot representing an unknotted curve about which the knot
is braided in Figure 10(b). Note that the result of resolving the band in Figure 10(b) is a 4–braiding of
the 2–component unlink, with each component given by a 2–braid. Thus, at least two helper bands are
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(a)
(b) (c)

(d)

(e)

(f)

Figure 9: Top row: the process of converting a band presentation for the genus one Seifert
surface for the figure-8 knot into a bridge-braided band presentation. Middle row: a tri-plane
diagram corresponding to the bridge-braided band presentation of (d). See Figure 8 for another
instantiation of this example.

required to achieve bridge-braided band position in this example; Figure 10(c) shows two such bands that
suffice. (See Remark 3.10 below.)

Figure 10(d) gives a bridge-braided band presentation for the ribbon disk, with the caveat that the helper
bands do not appear to be leveled as shown. However, we claim that such a leveling is possible: First, note
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(a)

(b) (c) (d)

(e)

(f)

Figure 10: Top row: the process of converting a band presentation for a ribbon disk for the steve-
dore knot into a bridge-braided band presentation. Middle row: a tri-plane diagram corresponding
to the bridge-braided band presentation of (d). Bottom row: a second tri-plane diagram, obtained
from the first via a sequence of tri-plane moves.

that the left helper band can be isotoped so that its core lies in the bridge sphere without self-intersection.
Depending on how one chooses to do this, the core may intersect the core of the dark blue band (the
original fission band for the ribbon disk). However, since this latter band is dualized by a bridge disk
for T3, there is an isotopy pushing the helper band off the fission band. At this point, the left helper band
and the fission band are both level, disjoint, and dualized by bridge disks. Now, we note that the right
helper band can be isotoped so that its core lies in the bridge sphere without self-intersection. To do
this, however, we must slide the right helper band over the fission band so that their endpoints (attaching
regions) are disjoint. Again, the core may intersect the cores of the other two bands, but since the other
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two bands are each dualized by bridge disks, we may push the core of the right helper band off the cores
of the other two bands. The end result is that all three bands lies in the required position.

Figure 10(e) shows a tri-plane diagram for the bridge trisection corresponding to the bridge-braided band
position from Figure 10(d). It is worth observing that it was not necessary to carry out the leveling of the
bands described in the previous paragraph; it suffices simply to know that it can be done. Had we carried
out the leveling described above, the result would have been a tri-plane diagram that could be related to
the one given by a sequence of interior Reidemeister moves. Figure 10(f) shows a tri-plane diagram that
is related to the tri-plane diagram of Figure 10(e) by tri-plane moves. See Section 4 for details regarding
these moves.

Remark 3.10 There is a subtle aspect to Figure 10(c) that is worth pointing out. Suppose instead that
the left helper band were chosen to cross over the braid in the two places where it crosses under. It turns
out that this new choice is still a helper band but would fail to result in a bridge-braided band position.
To be precise, let T denote the braid in Figure 10(c), which we think of as a 4–stranded tangle, and let b
denote this new choice of bands — ie three bands that are identical to the ones shown in Figure 10(c),
except that the left helper band passes above T in two places, rather than under. The resolution Tb is
a new 4–stranded tangle. Regardless of any concerns about bridge position that could be alleviated by
perturbing T, it is necessary that Tb be a 4–braid. However, this is not the case in this example. In fact,
Tb is not even a trivial tangle! The reader can check that Tb is the split union of two trivial arcs, together
with a 2–stranded tangle T0 that has a closure to the square knot.

So, the “helper bands” of the b presently being considered are not actually helper bands in the sense that
they don’t transform U 00 into an unlink U 0 in standard position, as required. Of course, by the proof of
Proposition 3.5, we know that we can augment b by adding two more helper bands, resulting in a total of
five bands, so that the result can be bridge-braided. On the other hand, Figure 10 shows that it is possible
to achieve a bridge-braided band position with fewer than four helper bands; comparison of Figures 8
and 9 gives another example of this. Precisely when this is possible and precisely how one chooses a
more efficient set of helper bands of this sort is not clear; we pose the following question.

Question 3.11 Does there exist a surface F in B4 such that every .b; v/–bridge braided band presentation
of F requires v helper bands?

Such a surface would have the property that every bridge trisection contains some flat patches. For this
reason, it cannot be ribbon, due to the results of Section 3.4 below.

Having discussed in detail the above examples, we now return our attention to the goal of bridge trisecting
surfaces.

Proposition 3.12 Let F� B4 be the realizing surface for a .b; cI v/–bridge-braided band presentation
. Ǒ; U; b/. Then F admits a .b; cI v/–bridge trisection T

. Ǒ;U;b/
.
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P1

P3 PC3

HC3 nH3

Y �3E

†f2g

H3f2g

H1f2g

Ef2� �g HC3 f2� �g

Figure 11: A schematic illustrating how to obtain a bridge trisection from a bridge-braided band
presentation; codimension two objects are not shown.

Proof As in Proposition 3.3, we imagine that the 2–complex L[U [ b corresponding to the bridge-
braided band presentation . Ǒ; b; U / is lying in the level set B4

f2g
, which inherits the Heegaard double

structure .H1;H3; Y3/. Assume that F is the corresponding realizing surface. We modify this 2–complex
so that the bands b lie in the interior of H3, rather than centered on †.

Let � >0, and assume that the resolution of the bands b for L[U occurs inH3.2��; 2/. So Ff2gDL[U ,
while Ff2� �g D U 0. Let .PC3 ;x

C
3 / denote a slight push-off of .P3;x3/ into .H3;T3/. Let .H�13; ˇ

�
13/

denote the corresponding contraction of .Y3; ˇ3/, and let .HC3 ;T
C
3 / denote the corresponding expansion

of .H3;T3/. In other words, we remove a (lensed) collar of P3 from Y3 and add it to H3.

We will now describe the pieces of a bridge trisection for F. Figure 11 serves as a guide to the understanding
these pieces. Define

(1) .†0;x0/D .†;x/f2g[BŒ2; 4�;

(2) .H 01;T
0
1/D .H1;T1/f2g[ .P1;x1/Œ2; 4�;

(3) .H 02;T
0
2/D .†;x/Œ2� �; 2�[ .H

C
3 ;T

C
3 /f2� �g[ .P

C
3 ;x

C
3 /Œ2� �; 4�;

(4) .H 03;T
0
3/D .H3;T3/f2g[ .P3;x3/Œ2; 4�;

(5) .Z01;D
0
1/D .B

4;F/Œ0;2���[ ..H1;T1/Œ2� �; 2�/[ .Y
�
3 ; ˇ

�
3 /Œ2� �; 2�;

(6) .Z02;D
0
2/D ..B

4;F/Œ2��;2�\H
C
3 Œ2� �; 2�/[

�
.Y3 n Int.Y �3 /; ˇ3 n Int.ˇ�3 //Œ2; 4�

�
; and

(7) .Z03;D
0
3/D .B

4;F/Œ2;4�\ .H1[†H3/Œ2; 4�.
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P1

B

P3

H1

H3

†

Y1

Y2

P2

Figure 12: Two-thirds of a trisection, with induced orientations on the boundary.

It is straightforward to verify that the pairs (1)–(7) have the right topology, except in the case of (3)
and (6), where slightly more care is needed. For (3), the claim is that .H 02;T

0
2/ Š .H2; .T2/b/ is a

trivial .b; v/–tangle. For (6), the claim is that the trace .Z02;D
0
2/ of this band attachment is a trivial

.c2; v/–disk-tangle. Both of these claims follow from the fact that each band of b is dualized by a bridge
disk for T3; this is essentially [27, Lemma 3.1]. Finally, it only remains to verify that the pieces (1)–(7)
intersect in the desired way. This is straightforward to check, as well.

Remark 3.13 Care has been taken to track the orientations throughout this section so that the orientations
of the pieces of the bridge trisection produced in Proposition 3.12 agree with the orientation conventions
given in Section 2.9. For example, the union H1[†H3 appearing in the bridge-braided band presentation
set-up of Definition 3.4 gets identified with a portion of B4f2g in the proof of Proposition 3.12, where it
is oriented as the boundary of B4Œ0; 2�. This agrees with the convention that @Z1 DH3[†H1[Y3, so
@.Z2[Z3/D Y1[H1[†H3[Y2. See Figure 12.

Proposition 3.14 If F admits a .b; cI v/–bridge trisection , then FD F. Ǒ;U;b/ for some .b; cI v/–bridge-
braided band presentation . Ǒ; U; b/.

Proof Suppose F is in bridge position with respect to T0. Consider the link L3 D ˇ3[T3[T1 D @D3.
Let L denote the vertical components of L3 n Int.ˇ3/DT3[x T1, and let U denote the flat components.
Then we have @D3 D L[ ˇ3 [U ; in particular, L is parallel to ˇ3 (as oriented tangles) through the
vertical disks of D3. Let L be the closed one-manifold given by

ˇ1[ˇ2[L:

By the above reasoning, L is boundary parallel to the boundary braid ˇ1 [ˇ2 [ˇ3 D Ǒ D @F via the
vertical disks of D3.

Let Y DY1[H1[H3[Y2 and note that Y has the structure of a standard Heegaard-double decomposition
.H1;H3; Y1[Y2/ on S3 D @.Z1[Z2/ and is oriented as the boundary of Z1[Z2, which induces the
opposite orientations on the 3–balls H1 and H3 as does Z3. See Figure 12. It will be with respect to this
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structure that we produce a bridge-braided band presentation for F. Note that L\ .Y1[Y2/ is already a
v–braid, giving condition (1) of the definition of a bridge-braided band presentation. Similarly, conditions
(2) and (3) have been met given the position of L[U with respect to the Heegaard splitting H1[†H3.

Next, we must produce the bands b. This is done in the same way as in [27, Lemma 3.3]. We consider
the bridge splitting .H2;T2/[.†;x/ .H3;T3/, which is standard — ie the union of a perturbed braid
and a bridge splitting of an unlink. Choose shadows T�2 and T�3 on † for these tangles. Note that we
choose shadows only for the flat strands in each tangle, not for the vertical strands. Because the splitting
is standard, we may assume that T�2 [T�3 is a disjoint union of c2 simple closed curves C1; : : : ; Cc2 ,
together with some embedded arcs, in the interior of †. For each closed component Ci , choose a shadow
N��i � .T

�
2 \Ci /. Let

!� D T�2 n

� c2[
iD1

N��i

�
:

In other words, !� consists of the shadow arcs of T�2 , less one arc for each closed component of T�2[T�3 .
Note that j!�j D b� c2.

The arcs of !� will serve as the cores of the bands b as follows. Let bD !� � I , where the interval is in
the vertical direction with respect to the Heegaard splitting H1[†H3. In other words, b is a collection
of rectangles with vertical edges lying on L[U and a horizontal edge in each of H1 and H3 that is
parallel through b to !�. We see that condition (4) is satisfied.

Note that the arcs !� came from chains of arcs in T�2 [T�3 , so each one is adjacent to a shadow arc
in T�3 . This is obvious in the case of the closed components, since each such component must be an
even length chain of shadows alternating between T�2 and T�3 . Similarly, each nonclosed component
consists of alternating shadows. This follows from the fact that these arcs of shadows correspond to
vertical components of L, each of which must have the same number of bridges on each side of †. These
adjacent shadow arcs in T�3 imply that b is dual to a collection of bridge disks for T3, as required by
condition (5).

Finally, let U 0 DLb, which should be thought of as lying in H1[H2[ˇ1. In fact, U 0 DT1[T2[ˇ1,
so it is the standard link Lc1;w in the standard Heegaard-double structure on @Z1. Thus, (6) is satisfied,
and the proof is complete.

The following example illustrates the proof of Proposition 3.14.

Example 3.15 (square knot disk) Figure 13(a) shows a tri-plane diagram for a surface that we will
presently determine to be the standard ribbon disk for the square knot, as described by the band presentation
in Figure 13(g). The first step to identifying the surface is to identify the boundary braid. In the proof of
Proposition 3.14, this was done by considering the union ˇ1[ˇ2[L. Diagrammatically, this union can
be exhibited by the following three part process:
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(c)

L

ˇ2

ˇ1

(d)

(a)

(b)

(e)

(f) (g)

Figure 13: The process of converting the tri-plane diagram (a) into a bridge-braided band pre-
sentation (e) in order to identify the underlying surface, which in this case can be seen to be the
standard ribbon disk for the square knot (g).

(1) Start with the cyclic union T1 [T3 [T3 [T2 [T2 [T1 of the seams of the bridge trisection;
see Figure 13(c).

(2) Discard any components that are not braided; there are no such components in the present example,
though there would be if this process were repeated with the tri-plane diagram in Figure 8(e) — a
worthwhile exercise.

(3) Straighten out (deperturb) near the intersections T3\T2 and T2\T1; see Figure 13(d).

If we continued straightening out near T1[T3, we would obtain a braid presentation for the boundary
link; see Section 4.1 for a discussion relating to this point. Presently, however, it suffices to consider the
1–manifold ˇ1[ˇ2[L shown in Figure 13(d), which we know to be isotopic (via the deperturbing near
T1\T3) to the boundary braid.
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(a)

(b) (c) (d)

Figure 14: Recovering the boundary braid (d) from a tri-plane diagram (a), with bands tracked.
The surface described is the Möbius band bounded by the right-handed trefoil in S3.

Having identified the boundary braid, we must identify a set of bands that will exhibit a bridge-braided
band presentation corresponding to the original bridge trisection. Following the proof of Proposition 3.14,
these bands will come from a subset of the shadows T�2 . To this end, shadows for the tangles T2 and T3

are shown in Figure 13(b). If there are closed components, one shadow of T�2 is discarded from each
such component. In the present example, this step is not necessary; again, consider repeating this exercise
with the tri-plane diagram from Figure 8(e). So, the set !� of the cores of the bands we are looking
for, is precisely the blue shadows of Figure 13(b). In Figure 13(d) these shadows have been thickened
vertically into bands that are framed by the bridge sphere T1\T3. In Figure 13(e), this picture has been
simplified, and the bands have been perturbed into T3. In Figure 13(f), the bridge splitting structure has
been forgotten, and the boundary braid is clearly visible. At this point, we see that one band (light blue)
is a helper band and can be discarded. At last, Figure 13(g), we recover an efficient band presentation for
the surface originally described by the tri-plane diagram of Figure 13(a).

A large family of ribbon disks for the square knot that are pairwise nonisotopic rel-boundary was introduced
in [29]; it would be interesting to have bridge trisections for these disks.

Example 3.16 (2–stranded torus links) Figure 14(a) shows a tri-plane diagram corresponding to a
bridge trisection of the Möbius band bounded in S3 by the .2; 3/–torus knot; see Figure 14(d) for the
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band presentation. However, this example could be generalized by replacing the four half-twists in the
first diagram P1 with n half-twists for any n 2 Z, in which case the surface described would be the
annulus (respectively, the Möbius band) bounded by the .2; n/–torus link when n is even (respectively,
the .2; n/–torus knot when n is odd).

In any event, Figure 14(b)–(d) gives cross-sections of the bridge trisected surface with concentric shells
of B4, as described in Example 4.5 below. In this example, we also track the information about bands
encoded in the tri-plane diagram; cf Figure 13 and Example 3.15. In slight contrast to the square knot
examples, the shadows of T2 are quite simple, so the bands are easy to include. In Figure 14(c), it
becomes apparent that the right band (light blue) is a helper band and can be disregarded.

A shadow diagrammatic analysis of this example is given in Example 5.10.

Theorem 3.17 Let T0 be the standard trisection of B4, and let F� B4 be a neatly embedded surface
with LD @F. Fix an index v braiding Ǒ of L. Suppose F has a handle decomposition with c1 cups , n
bands , and c3 caps. Then , for some b 2N0, F can be isotoped to be in .b; cI v/–bridge trisected position
with respect to T0, such that @FD Ǒ, where c2 D b�n.

Proof By Proposition 3.5, FD F
. Ǒ;U;b/

for some bridge-braided band presentation . Ǒ; U; b/ of type
.b; cI v/. By Proposition 3.12, F admits a bridge trisection of the same type.

3.4 Bridge-braided ribbon surfaces

By construction, a .b; cI v/–bridge-braided ribbon presentation . Ǒ; b/ will have c3 D 0. The next lemma
shows that this fact can be used to systematically decrease the number c1 of components of the unlink U 0,
at the expense of increasing the index v of the braid Ǒ.

Lemma 3.18 If F is the realizing surface for a .b; .c1; c2; 0/I v/–bridge-braided ribbon presentation
. Ǒ; b/ with c1 > 0, then F is the realizing surface for a .b; .c1�1; c2; 0/I vC1/–bridge-braided ribbon
presentation . ǑC; b/, where ǑC is a Markov perturbation of Ǒ. The Markov perturbation can be assumed
to be positive.

Proof Suppose that . Ǒ; b/ is a bridge-braided ribbon presentation with respect to the standard Heegaard
double structure .H1;H3; Y3/ on S3, as in Definition 3.4. We orient Ǒ so that it winds counterclockwise
about the braid axis B D @†. This induces an orientation on the arcs of LD T1[x T3, which induces
an orientation on the bridge points x: a bridge point x 2 x is positive if an oriented arc of L passes from
H1 to H3 through x. Since c3 D 0, every point of x can be oriented in this way.

Recall from the proof of Proposition 3.12 that we can perturb the bands of b, which originally intersect †
in their core arcs, into the interior of H3 so that they may be thought of as bands for the tangle T3. Let
T2 D .T3/b, and let L0 D T1[x T2.
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Figure 15: Modifying a bridge trisection of a ribbon surface to remove a flat patch at the expense
of Markov-stabilizing the boundary braid.

Utilizing the assumption that c1 > 0, let J be a flat component of U 0. Let x be a positive point of L\†
so that x 2 J . See Figure 15, left. Such a point exists, since J contains a flat arc of T1, and the endpoints
of this arc have differing signs. We perturb † at x to produce a new bridge splitting T01[x0T

0
3, which we

consider as T0i D Ti [ �i , where �i is the new flat strand near x. If �i was a bridge system for Ti , then
�0i D�i [Di is a bridge system for T0i , where Di is a bridge semidisk for �i . See Figure 15, middle,
and note that there may or may not be a band attached to T3 near x.

Now, we have that x0 D �1\ �3 is negative. Let x0i D @�i nx denote the positive points introduced by this
perturbation. Let �D �1[x �3. Note that we can assume there is no band of b incident to either �i . The
bridge splitting T01[x T03 is perturbed at x0. We will swap this perturbation for a Markov perturbation
by dragging the point x0 towards and through the boundary B of †. Let ! be an embedded arc in †
connecting x0 to B such that Int.!/ \ x D ∅. Since ! is dualized by each of the two small bridge
semidisks Di ��0i , we can assume that Int.!/\�0i D∅.

Change . Ǒ; b/ by an ambient isotopy that is supported in a tubular neighborhood of ! and that pushes x0

along ! towards and past B . This is a finger move of � along !. (Note that the surface F is locally a
product of � near x0.) Let �0 denote the end result of this finger move; ie a portion of � has been pushed
out of H1 [† H3 into Y3. Let � 00i D �

0 \Hi . Let � 0013 D �
0 \ Y3. Let D00i denote the bridge triangle

resulting from applying the ambient isotopy to Di . We see immediately that � 00i are vertical, and that
�00i D .�

0
i nDi /[D

00
i is a bridge system for T00i D .T

0
i n �i /[ �

00
i . It’s also clear that � 0013 is a vertical

strand in Y3. We make the following observations, with an eye towards Definition 3.4:

(1) ˇ003 D ˇ3[ �
00
13 is a .vC1/–braid.

(2) L00 D T001 [x00 T
00
3 is a perturbing of a .vC1/–braid.

(3) We still have c1 D 0; the T00i are .b�v�1/–perturbings of .vC1/–braids.

(4) The bands b can still be isotoped to intersect † in their cores.
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(5) The bride disks �003 dualize the bands b.

(6) . Ǒ/b has one fewer flat component.

Thus, we have verified that conditions (1)–(6) of Definition 3.4 are still satisfied, with the only relevant
differences being that each tangle has an additional vertical strand and the flat component J of U 0 is now
vertical. It follows that we have produced a bridge-banded ribbon presentation . ǑC; b/ for F, where ǑC

is a Markov perturbation of Ǒ.

Remark 3.19 The hypothesis that c3 D 0 in the above lemma was necessary to ensure that the process
described in the proof resulted in a Markov perturbation of the boundary. If c3 > 0, then it is possible
that each point x 2 x\ J lies on a (flat) component of U . If the proof were carried out in this case, it
would have the effect of changing the link type from L to the split union of L with an unknot on the
boundary of F. This is reflective of the general fact that a nonribbon F with boundary L can be thought
of as a ribbon surface for the split union of L with an unlink.

Recall that c is an ordered partition of type .c; 3/ for some c 2N0; in particular, c D c1C c2C c3.

Lemma 3.20 If F is the realizing surface for a .b; cI v/–bridge-braided band presentation . Ǒ; U; b/ with
ci D 0 for some i , then F is the realizing surface for a .b; 0I vCc/–bridge-braided ribbon presentation
. ǑCC; b00/, where ǑCC is a Markov perturbation of Ǒ.

Proof Suppose F is the realizing surface for a .b; cI v/–bridge-braided band presentation . Ǒ; U; b/ with
ci D 0 for some i . By Proposition 3.12, F admits a .b; .c1; c2; c3/I v/–bridge trisection filling Ǒ. By
relabeling the pieces, we can assume that c3 D 0. By Proposition 3.14, this gives us a .b; .c1; c2; 0/I v/–
bridge-braided ribbon presentation . Ǒ; b0/. Note that while the braid type Ǒ hasn’t changed, the bands b
may have, and the intersection of Ǒ with the pieces of the standard Heegaard-double decomposition may
have as well. Nonetheless, we can apply Lemma 3.18 iteratively to decrease c1 to zero, at the cost of
Markov-perturbing Ǒ into a .vCc1/–braid ǑC.

Passing back to a .b; .0; c2; 0/I vCc1/–bridge trisection filling ǑC via Proposition 3.12, relabeling, and
applying Proposition 3.14, we extract a .b; .c2; 0; 0/I vCc1/–bridge-braided ribbon presentation . ǑC; b00/.
Again, the bands and the precise bridge splitting may have changed. However, a second application of
Lemma 3.18 allows us to decrease c2 to zero, at the cost of Markov perturbing ǑC into a .vCc1Cc2/–
braid ǑCC. Note that we have Markov perturbed a total of c D c1C c2 times.

Theorem 3.21 Let T0 be the standard trisection of B4, and let F� B4 be a neatly embedded surface
with LD @F. Let Ǒ be an index v braiding of L. Then the following are equivalent :

(1) F is ribbon.

(2) F admits a .b; cI v/–bridge trisection filling Ǒ with ci D 0 for some i .

(3) F admits a .b; 0I vCc/–bridge trisection filling a Markov perturbation ǑC of Ǒ.
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Proof Assume (1). Since F is ribbon, it admits a .b; .c1; c2; 0/I v/–bridge-braided ribbon presentation
. Ǒ; b/, by Proposition 3.5. By Proposition 3.12, this can be turned into a .b; .c1; c2; 0/I v/–bridge trisection
filling Ǒ, which implies (2).

Assume (2). The bridge trisection filling Ǒ with ci D 0 for some i gives a bridge-braided ribbon
presentation . Ǒ; b0/ with ci D 0 for the same i . By Lemma 3.20, there is a .b; 0I vCc/–bridge-braided
ribbon presentation . ǑCC; b00/ for F, where ǑCC is a Markov perturbation of Ǒ. By Proposition 3.12,
this gives a .b; 0I vCc/–bridge trisection of F filling ǑCC. This implies (3), where ǑCC is denoted
by ǑC for simplicity.

Assume (3). The .b; 0I vCc/–bridge trisection filling ǑC gives rise to a bridge-braided ribbon presentation
. ǑC; b00/ of the same type, by Proposition 3.14, such that FDF

. ǑC;b00/
. However, a band presentation of

a surface is precisely a handle-decomposition of the surface with respect to the standard Morse function
on B4. It follows that F can be built without caps; hence, F is ribbon, and (1) is implied.

Note for completeness that (2) can be seen to imply (1) by the argument immediately above, and that (3)
implies (2) trivially.

4 Tri-plane diagrams

A significant feature of the theory of trisections (broadly construed) is that it gives rise to new diagrammatic
representations for four-dimensional objects (manifolds and knotted surfaces therein). In this section, we
describe the diagrammatic theory for bridge trisections of surfaces in the four-ball. Recall the notational
set-up of Section 3.1.

Let .H;T/ be a tangle with H ŠB3. Let E �H be a neatly embedded disk with @T� @E. By choosing
a generic projection of H onto E, we can represent .H;T/ by a tangle diagram. In the case that H ŠB3,
the lensed cobordism structure on .H;T/ discussed in Section 2.3 can be thought of as inducing the
hemispherical decomposition of @H Š S2. So, we refer to @CH and @�H as the southern and northern
boundaries. This induces a decomposition of @E into a northern arc and a southern arc. See Figure 16
for examples of .1; 2/–tangle diagrams.

Definition 4.1 A .b; cI v/–tri-plane diagram is a triple P D .P1;P2;P3/ such that Pi is a .b; v/–tangle
diagram and the union Pi [Pi is a tangle diagram for a split union of a v–braid with a ci–component
unlink. (Note that Pi is the diagram Pi with crossing information reversed.) The southern arcs (and the
2bC v points x that they contain) are assumed to be identified. We denote the v points contained in the
northern arc of Pi by yi ; the three northern arcs are not identified.

A tri-plane diagram describes a bridge trisected surface in the following way. Let .Hi ;Ti / be tangles
corresponding to the tangle diagrams Pi . Then the triple of tangle diagrams can be thought of as describing
the union

.H1;T1/[ .H2;T2/[ .H3;T3/
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of these tangles, where .Hi ;Ti /\ .HiC1;Ti /D .†;x/. This explains the identification of the southern
portions of the tangle diagrams in the definition. Now, by definition, each union .Hi ;Ti /[.HiC1;TiC1/
is the split union of a braid with an unlink of ci components inside a 3–ball. By Lemma 2.15, there is
a unique way to glom on to this 3–ball a .ci ; v/–disk-tangle .Zi ;Di /, where Zi Š B4. Therefore, the
union

.Z1;D1/[ .Z2;D2/[ .Z3;D3/

is a bridge trisected surface in B4. The following is a corollary to Theorem 3.17, which showed that
surface in B4 admit bridge trisections.

Corollary 4.2 Every neatly embedded surface in B4 can be described by a tri-plane diagram.

Proof By Theorem 3.17, every such surface in B4 can be put in bridge position with respect to the
genus zero trisection T0. The corresponding bridge trisection is determined by its spine

.H1;T1/[ .H2;T2/[ .H3;T3/:

This spine can be represented by a tri-plane diagram by choosing a triple of disks Ei � Hi whose
boundaries agree and choosing generic projections Hi�Ei that induce tangle diagrams for the Ti .

The union Ei [E2 [E3 of disks that appeared in the proof above is called a tri-plane for the bridge
trisection. We consider bridge trisections up to ambient isotopy, and an ambient isotopy of a bridge
trisection can change the induced tri-plane diagram. These changes can manifest in following three ways,
which we collectively call tri-plane moves. See Figure 16 for an illustration of each move.

An interior Reidemeister move on P is a Reidemeister move that is applied to the interior of one of the
tangle diagrams Pi . Interior Reidemeister moves correspond to ambient isotopies of the surface that are
supported away from @B4 and away from the core surface †. They also reflect the inherent indeterminacy
of choosing a tangle diagram to represent a given tangle.

A core (braid) transposition is performed as follows: Pick a pair of adjacent bridge points x; x0 2 x,
recalling that x and x0 are (identified) points in the southern arc of each of the three tangles diagram.
Apply a braid transposition to all three tangle diagrams that exchanges x and x0. This introduces a crossing
in each tangle diagram; the introduced crossing should have the same sign in each diagram. Bridge sphere
braiding corresponds to ambient isotopies of the surface that are supported in a neighborhood of the core
surface †. Note that this gives an action of the braid group M.D2;x/ on the set of tri-plane diagrams.

A page (braid) transposition is performed as follows: Pick a pair of adjacent points y; y0 2 yi in the
northern arc of one of the tangle diagrams. Apply a braid transposition to this tangle diagram that exchanges
y and y0. In contrast to a core transposition, the braid transposition is only applied simultaneously to one
diagram. Page transpositions correspond to ambient isotopies of the surface that are supported near @B4.

Interior Reidemeister moves and core transpositions featured in the theory of bridge trisections of closed
surfaces in the four-sphere described in [27]. See, in particular, [27, Lemma 7.4] for more details.
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Figure 16: Top: a tri-plane diagram. Middle: the result of applying to the top a bridge sphere
braid transposition at the third and fourth bridge points. Bottom: the result of applying to the
middle a page braid transposition in the first tangle and a Reidemeister move in the third tangle.

Proposition 4.3 Suppose P and P 0 are tri-plane diagrams corresponding to isotopic bridge trisections.
Then P and P 0 can be related by a finite sequence tri-plane moves.

Proof As in the proof of [27, Lemma 7.4], it suffices to assume that we have a fixed EDE1[E2[E3

within HDH1[H2[H3 and that we have two sets of seams TDT1[T2[T3 and T0DT01[T02[T03
determining a pair of isotopic spines in B4.

Note that the southern endpoints of the Ti and the T0i are both contained in the southern arc @Ei\Int.B4/,
while all the northern endpoints are contained in the northern arc @Ei \ @B4. Without loss of generality,
we assume the northern (resp. southern) endpoints of Ti agree with the northern (resp. southern) endpoints
of T0i for each i .

As in the proof of [27, Lemma 7.4], if ft is an ambient isotopy of H such that f0 is the identity and
f1.T/D T0, then ft induces a loop in the configuration space of the bridge points x D T\†. In this
setting, ft also induces, for each i 2 Z3, a loop in the configuration space of the points y 2 Ti \ @�Hi

in the disk @�Hi .

We write ft as f †t [f
1
t [f

2
t [f

3
t [f

0
t , where f †t agrees with ft in a small neighborhood of † and is

the identity outside of a slightly larger neighborhood of †; f it agrees with ft in a small neighborhood
of @�Hi and is the identity outside a slightly larger neighborhood of @�Hi ; and f 0t is supported away
from the small neighborhoods of † and @�Hi . Since these can be isolated to a single region near @�Hi
for some i , they are independent of each other.
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Since f †t corresponds to a braiding of the bridge points x, there are tri-plane diagrams P and P†

corresponding to T and T† D f †1 .T/ that are related by a sequence of core transpositions. Continuing,
there is a tri-plane diagram P 00 corresponding to T00 D .f 11 [f

2
1 [f

3
1 /.T

†/ that is related to P† by a
sequence of interior Reidemeister moves. Finally, the tri-plane diagram P 0 corresponds to f 01.T

00/ and
is related to P 00 by a sequence of page transpositions. In total, P and P 0 are related by a sequence of
tri-plane moves, as desired.

4.1 Recovering the boundary braid from a tri-plane diagram

We now describe how to recover the boundary braid .S3;L/ D @.B4;F/ from the data of a tri-plane
diagram for .B4;F/. This process is illustrated in the example of the Seifert surface for the figure-8
knot in Figure 17; see Figure 8 for more details regarding this example. See also Figure 13 for another
example.

Let P D .P1;P2;P3/ be a tri-plane diagram for a surface .B4;F/. Let E D .E1; E2; E3/ denote the
underlying tri-plane. Let @�Ei and @CEi denote the northern and southern boundary arcs of these disks,
respectively, and let S0i D @�Ei \ @CEi their 0–sphere intersections. Recall that, diagrammatically, the
arcs @CEi correspond to the core surface † of the trisection, which is a disk, and the 0–spheres S0i
correspond to the unknot B D @†, which we think of as the binding of an open-book decomposition of S3

with three disk pages given by the Pi . Recall that † is isotopic rel-@ to each of the Pi via the arms Hi .

With this in mind, consider the planar link diagram ıyP obtained as follows. First, form the cyclic union

P3[P3[P2[P2[P1[P1;

where PiC1 and Pi are identified along their southern boundaries, and Pi and Pi are identified along
their northern boundaries. Note that the cyclic ordering here is the opposite of what one might expect.
This important subtlety is explained in the proof of Proposition 4.4 below. The corresponding union of
the disks of the tri-plane

E3[E3[E2[E2[E1[E1

is topologically a two-sphere S2. In particular, the 0–spheres S0i have all been identified with a single
0–sphere S0, which we think of as poles of the two-sphere. We represent this two-sphere in the plane by
cutting open along @�E1 and embedding the resulting bigon so that theEi andEi lie in the yz–plane with
E3\E2 on the y–axis. See Figure 17(b). In this way, the diagram ıyP encodes a link in a three-sphere.
The unknotted binding B in S3 can be thought of as the unit circle in the xy–plane. (The positive x–axis
points out of the page.) Each longitudinal arc on S2, including the northern and southern arcs of each Ei ,
corresponds to a distinct page, given six in all. However, the ambient three-sphere in which this link lives
is not S3 D @B4, as the proof of Proposition 4.4 will make clear.

Note that the diagram ıyP will have only two types of connected components:

(1) components that meet each disk Ei and are homotopically essential in S2 n �.S0/, and

(2) components that are null-homotopic and are contained in some pair EiC1[Ei .
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Components of type (1) will correspond to the boundary link .S3;L/, while components of the second
kind will correspond to split unknots. The components of type (1) are not braided in the sense of being
everywhere transverse to the longitudinal arcs of S2 but, as we shall justify below, they become braided
after a sequence of Reidemeister moves and isotopies that are supported away from S0. Define ıP to be
the result of discarding all components of type (2) from ıyP , then straightening out the arcs of type (1)
until they give a braid diagram in the sense that they are everywhere transverse to the longitudinal arcs
connecting the poles S0 � S2.

Proposition 4.4 Suppose P D .P1;P2;P3/ is a tri-plane diagram for .B4;F/. Then the diagram ıP is a
braid diagram for the boundary link .S3;L/D @.B4;F/.

Proof Consider the spine H1 [H2 [H3 of the genus zero trisection T0 of B4. Let N be a small
lensed neighborhood of this spine inside B4. Here, the qualifier “lensed” has the effect that N \ @B4 is
unchanged,

N \ @B4 D P1 tP2 tP3:

We can decompose @N into six pieces,

@N DHC1 [H
�
3 [H

C
3 [H

�
2 [H

C
2 [H

�
1 ;

where the pieces intersect cyclically in the following manner: the HCiC1\H
�
i D†

�
i are the three obvious

push-offs of† into @N , andH�i \H
C
i DPi . BecauseBD@†D@†i D@Pi , it follows that @N is a closed

3–manifold. In fact, there is an obvious “radial” diffeomorphism N ! B4 that pushes HCiC1[H
�
i onto

Yi in an orientation-preserving way. To unpack this last statement, recall that Zi induces an orientation
on its boundary such that

@Zi DHi [†HiC1[Yi :

In @N , we have corresponding pieces HCiC1[†�i H
C
i , but the correspondences

Hi $H�i ; HiC1$HCiC1; †$†�i

all reverse orientation. This is because the outward normal to N points into Zi . Figure 36, left, provides
a potentially helpful schematic.

Bringing the surface F into the picture, we have the identification

@N \FD .H1;T1/[ .H3;T3/[ .H3;T3/[ .H2;T2/[ .H2;T2/[ .H1;T1/:

If E D E1 [E2 [E3 was our original tri-plane, then there are obvious disks E˙i � H
˙
i onto which

@N \F can be projected. As discussed in the text preceding this proposition, the union of the E˙i is a
two-sphere, which can be identified with the plane, as discussed. Adopting this identification, we find
that the induced diagram ıP is a planar diagram for @N \F.

Recall that, by definition, PiC1[Pi is a diagram for (the mirror of) a split union of a braid with an unlink.
Thus, the total union ıP is (currently) a diagram for a split union of a closed braid and three unlinks.
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(a)

(b) (c) (d) (e)

Figure 17: Recovering the boundary braid (e) from a tri-plane diagram (a). Compare with Figure 8.

Note that although the diagram describes a closed (geometric) braid, the diagram may not be braided.
See Figure 17(b).

It remains to observe how this diagram changes as the neighborhood N is enlarged until it fills up all
of B4 and @N coincides with S3 D @B4. Two things happen in the course of this. First, the unlinks will
shrink to points and disappear as the neighborhood N is enlarged to encompass the flat patches of the
trivial disk-tangles that cap them off. Second, the portions of the diagram corresponding to the closed
braid will “straighten out”, meaning they will deperturb until the diagram is an honest braid diagram.
Finally, the neighborhood N will coincide with all of B4, the union of the E˙i will live in S3, and the
diagram ıP will correspond to a braid diagram for LD @F, as desired.

Example 4.5 Figure 17(b) shows the diagram ıyP corresponding to the tri-plane diagram in Figure 17(a).
(This tri-plane diagram corresponds to the Seifert surface for the figure-8 knot; see Figure 8 for more
details.) The two black dots represent the braid axis, and each arc connecting the these dots corresponds
to a disk page of the braid axis.

As described in the proof of Proposition 4.4, the sequence in Figure 17(b)–(e) can be thought of as
describing the cross-section of the bridge trisected surface with concentric shells in B4, starting with the
boundary of a regular neighborhood of the spine of the trisection of B4 and terminating in the boundary
of B4. Moving from (b) to (c) in Figure 17, the cross-section changes only by isotopy, revealing clearly
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the presence of two unknotted, type (2) components. In the transition to Figure 17(d), these components
cap off and disappear. In the transition to Figure 17(e), the flat structure is forgotten as we deperturb. The
end result is the boundary of the surface, described by a braid.

For more examples, see Figures 13 and 14, which were discussed in Examples 3.15 and 3.16, respectively.

5 Shadow diagrams

The previous section developed a diagrammatic representation and calculus for bridge trisections in B4

that made use of the fact that B4 admits a genus zero trisection. In this section, we switch to an analysis
of diagrams for bridge trisection of surfaces in general four-manifolds. Here, the tri-plane-diagrammatic
approach is not possible, so we work instead with objects called shadow diagrams.

Consider a .g; bIp;f ; v/–tangle .H;T/. Let � be a bridge disk system for T. We now fix some
necessary notation.

� Let †D @CH .

� Let ˛ �† be a defining set of curves for H , disjoint from �.

� Let a denote a collection of neatly embedded arcs, disjoint from � and ˛ such that surgering †
along ˛ and a results in a disjoint union of disks. We assume jaj is minimized.

� Let T� denote the shadows of the flat strands of T — ie those coming from the bridge semidisks.

� Let A� denote the shadows for the vertical strands — ie those coming from the bridge triangles.

� Let x D T\†.

The tuple .†; ˛;T�;x/ is called a tangle shadow for the pair .H;T/. The tuple .†; ˛; a;T�;A�;x/ is
called an augmented tangle shadow for the pair .H;T/. We will say that an augmented tangle shadow is
an augmenting of the underlying tangle shadow. Figure 18 shows a pair of augmented tangle shadows: one
is found by considering the red, pink, and orange arcs and curves, while the other is found by considering
the dark blue, light blue, and orange arcs and curves. Note that we consider (augmented) tangle shadows
up to isotopy rel-@.

Lemma 5.1 A tangle shadow determines a tangle .H;T/ up to an isotopy fixing †D @CH.

Note that a tangle shadow cannot detect braiding of .H;T/ supported near .P;y/D@�.H;T/; augmenting
the shadow diagram does not solve this problem.

Proof Given a shadow diagram .†; ˛;T�;x/, let H be the lensed cobordism obtained from the spread
H � Œ0; 1� by attaching 3–dimensional 2–handles along the curves ˛ � f1g. Let T�H be obtained by
perturbing the interiors of the shadows T� � f0g into the interior of H to obtain the flat strands of T and
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Figure 18: A pair of (augmented) tangle shadows that, taken together, give a standard (augmented)
splitting shadow. The relevant parameters for each handlebody are gD 6, nD 2,mD 3, pD .0; 1/,
and f D .2; 1/. The relevant parameters for each tangle are b D 16 and vD .0; 2; 1/. The arcs
and curves of the ˛i and T�i for i D 1; 2 are shown in red and blue, respectively, while the arcs of
the Ai are shown in pink and light blue, respectively, and the arcs of a1 D a2 are shown in orange.

extending the marked points x to vertical arcs x � Œ0; 1� using a product structure of the spread to obtain
the vertical strands of T. Such a product structure is unique up to diffeomorphism of .P;y/D @�.H;T/,
so the resulting tangle is determined up to braiding near .P;y/; any two tangles differing thusly are
isotopic via an isotopy supported away from †.

As a matter of convention, we have assumed without loss of generality that the curves and arcs of
˛[a[T�[A� are all pairwise disjoint; it is not strictly necessary, for example, to assume ˛\T� D∅,
but this can always be achieved. Given a tangle shadow .†; ˛;T�;x/, we recall two standard moves:
Let ˛1 and ˛2 be two curves in ˛, and let ! be a embedded arc in † connecting ˛1 to ˛2 such that
Int.!/ \ .˛ [ T� [ x/ D ∅. Then N D �.˛1 [ ! [ ˛2/ is a pair of pants. Let ˛01 be the boundary
component of N not parallel to ˛1 or ˛2. Then ˛0 D ˛ n f˛1g [ f˛01g is a new defining set of curves
for H . We say that ˛0 is obtained from ˛ by a curve slide of ˛1 over ˛2 along !. Now let ��1 be an
arc of T� and let ˛2 be a curve in ˛ (resp. the boundary of a regular neighborhood of another arc ��2
of T�). Let ! be a embedded arc in † connecting ��1 to ˛2 such that Int.!/\ .˛[T� [x/D∅. Let
.��1 /

0 denote the arc obtained by banding ��1 to ˛2 using the surface-framed neighborhood of !. Then
.T�/0 D T� n ��1 [ .�

�
1 /
0 is a new collection of shadows for the flat strands of T. We say that .T�/0 is

obtained from T� by an arc slide of ��1 over ˛2 (resp. ��2 / along !. Two shadow diagrams for .H;T/ are
called slide-equivalent if they can be related by a sequence of curve slides and arc slides.

Given an augmented tangle shadow .†; ˛; a;T�;A�;x/, we have further moves. Similar to above, we
have arc slide moves that allow one to slide arcs of a or A� over arcs and curves of ˛ and T�. Note that
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we do not allow an arc or curve of any type to slide over an arc of a nor A�. Two (augmented) shadow
diagrams that are related by a sequence of these two types of moves are called slide-equivalent. The
following is a generalization of a foundational result of Johansson [17], and follows from a standard
argument, which we sketch.

Proposition 5.2 Two tangle shadows for a given tangle are slide-equivalent.

Proof Let .†; ˛;T�;x/ and .†; ˇ;S�;x/ be two shadow diagrams that define the same tangle .H;T/.
Assume these diagrams have been isotoped to intersect minimally. We will show that there is a sequence
of isotopies and slides among the arcs and curves of ˛[T� that result in these arcs and curves agreeing
with those of ˇ[S�.

Choose cut disks D.˛/ and D.ˇ/ in H , so @D.˛/D ˛ and @D.ˇ/D ˇ. Choose bridge disks �.T�/ and
�.S�/, so @�.T�/DT�[x T and @�.S�/DS�[x T. Assume that D.˛/\�.T�/DD.ˇ/\�.S�/D¿,
and D.˛/\TD D.ˇ/\TD¿.

We can assume there are no closed curves of intersection between the collections of disks as follows.
Suppose, for example, that D.˛/\�.S�/ contains a closed curve component. Choose one such component
that is innermost in �.S/, bounding a disk D � �.S�/ with Int.D/\ .D.˛/[�.T�// D ¿. Surger
D.˛/ along D, discarding the sphere component to get a new cut system filling ˛. Repeating, we can
arrange via surgery, that there are no curves of intersection among any of the disks.

It follows that every component of .D.˛/[�.T�//\ .D.ˇ/[�.S�// is an arc that is neatly embedded
in each of the two disk coinciding along it. There are three of cases to consider, based on whether this arc
intersects T at (i) both endpoints, (ii) one endpoint, or (iii) no endpoints.

Choose an arc a of intersection of type (i) that is outermost in �.S�/, so it cobounds and embedded disk
(a bigon) D ��.S�/ with an arc b of T. The arc a also cobounds a disk E in �.T�/ with the arc b. A
slight push-off of D[E is an embedded two-sphere in H n�.D.˛/[�.T�//, which is homeomorphic to
P �I , so it bounds a three-ball. (Here, P D @�H .) Note that this three-ball might intersect D.ˇ/[�.S�/,
but this is of no concern. The three-ball guides and isotopy of E rel-boundary until it agrees with D;
then, E can be isotoped rel-T off D, to remove the arc a of intersection. This reduces the number of arcs
of intersection of type (i), and can be repeated until none remain.

Next, choose an arc a of intersection of type (iii) that is outermost in D.ˇ/[�.S�/, so it cobounds an
embedded disk (a bigon) D � .D.ˇ/[�.S�// with an arc b of ˇ[S�. The arc a also cobounds a disk
E in D.˛/[�.T�/ with some arc b0 � ˛[T�. Let †0 denote the surface obtained from † by surgering
along D.˛/, excluding (if applicable) a disk containing a. We think of †0 as an embedded submanifold
of H that agrees with † away from the curves of surgery, so b[ b0 is a curve in †0. Let H 0 denote the
compression body cobounded by †0 and P , and note that H 0 is either P � I or P � I , plus a 1–handle
whose belt-sphere is a curve of ˛ containing a. In either event, b[ b0 bounds the disk D[E in H 0.
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First, if D[E is boundary parallel (into †0), then there is a disk in †0 bounded by b[b0. We can isotope
b0 across this disk to make it agree with b, then we can push it off b. During this isotopy, we might push
b0 over scars of the surgery and over shadow arcs of T�. In this case, there is a sequence of isotopies and
slides that move b0 to b on †, and the arc a of intersection is removed.

Second, if D[E is not boundary-parallel in H 0, then it must be isotopic to a disk of D.˛/ containing a.
In this case, let b00 be the arc of ˛ such that b0[ b00 is the curve of ˛ containing a. It follows that b00 is
isotopic to b in †0, so we can proceed as above to move b00 and remove the arc a of intersection. In this
way, we can assume that, after some slides and isotopy, there are no arcs of intersection of type (iii).

Arcs of intersection of type (ii) can be removed in a similar way, combining aspects of the first two
arguments. The result is that slides (among the curves and arcs of ˛[T�) can be performed to achieve
that ˛[T� is disjoint from ˇ[S�. Surger † along the curves of ˇ to get †0. In †0, the curves of ˛ all
bound disks, so they can be isotoped to agree with the scars of the ˇ curves. These isotopies might move
˛ curves across each other and over arcs of T�, and these occurrences correspond to slides. Similarly,
in †0 the arcs of T� are isotopic rel-boundary to those of S�, with these isotopies potentially involving
slides over each other and over the scars of the curves of ˛. The end result is that ˛[T� D ˇ[S�, as
desired.

A tuple .†; ˛1; ˛2;T�1;T
�
2;x/ is called a splitting shadow if each tuple .†; ˛i ;T�i ;x/ is a tangle shadow.

A splitting shadow gives rise to a bridge splitting of pair .M;K/ in the same way that a tangle shadow
gives rise to a tangle (see Lemma 5.1); in particular, K is determined only up to braiding supported
near @M . Recall the notion of a standard bridge splitting of .M;K/ from Section 2.6. If a splitting
shadow corresponds to a standard bridge splitting, then the tangle shadows .†; ˛i ;T�i ;x/ are (for i D 1; 2,
respectively) slide-equivalent to tangle shadows .†; ˛0i ; .T

�
i /
0;x/ such that .†; ˛01; ˛

0
2/ is a standard

Heegaard diagram (Section 2.4) and .T�1/
0 [ .T�2/

0 is a neatly embedded collection of polygonal arcs
and curves such that the polygonal curves bound disjointly embedded disks. We call such a splitting
shadow .†; ˛1; ˛2;T

�
1;T

�
2;x/ standard. Figure 18 shows a standard splitting shadow (ignore the pink,

light blue, and orange arcs for now). Two splitting shadows are called slide-equivalent if the two pairs of
corresponding tangle shadows are slide-equivalent.

Definition 5.3 A .g;k; f; cIp;f ; v/–shadow diagram is a tuple .†; ˛1; ˛2; ˛3;T�1;T
�
2;T

�
3;x/, such

that the tuple .†; ˛i ; ˛iC1;T�i ;T
�
iC1;x/ is slide-equivalent to a standard splitting shadow for each i 2Z3.

Two shadow diagrams are called slide-equivalent if the three pairs of corresponding tangle shadows are
slide-equivalent.

Figure 19 shows a shadow diagram corresponding to the bridge trisection of the ribbon disk for the
stevedore knot described in Figure 10. Note the orientation convention: the shadow diagram surface † is
oriented positively as the boundary of each arm of the spine. So, we should rotate each tangle represented
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Figure 19: A shadow diagram for the bridge trisection given in Figure 10, which corresponds a
ribbon disk for the stevedore knot.

in Figure 10(f) 90ı backwards into the plane of the page, so that we are viewing † from above in order
to arrive at the correct shadow diagram. This subtlety is the source of some confusion in the literature;
see [18, Remark 2.10] for a related discussion.

Proposition 5.4 A .g;k; f; cIp;f ; v/–shadow diagram determines the spine of a .g;k; f; cIp;f ; v/–
bridge trisection uniquely. Any two shadow diagrams for a fixed bridge trisection are slide-equivalent.

Proof First, note that a shadow diagram determines the spine of a bridge trisection. This follows
immediately from the definition of a shadow diagram, Lemma 5.1, and the definition of a spine; see
Proposition 2.22. The first claim follows from the fact that a bridge trisection is determined up to
diffeomorphism by its spine, by Proposition 2.22. The second claim follows from Proposition 5.2.

Since bridge trisections are determined by their spines (Corollary 2.23), we find that any surface .X;F/
can be described by a shadow diagram.

Corollary 5.5 Let X be a smooth , orientable , compact , connected four-manifold , and let F be a neatly
embedded surface in X . Then .X;F/ can be described by a shadow diagram.

5.1 Recovering the boundary braid from a shadow diagram

We now see how to recover the information about the boundary of a bridge trisected pair .X;F/. By
augmenting a shadow diagram for the bridge trisection, we will recover this information in the form of
an abstract open-book braiding, as defined in Section 2.8. What follows is based on the monodromy
algorithm described by Castro, Gay, and Pinzón-Caicedo in [6] and is closely related to the notion of an
arced relative trisection diagram, as described in [11].

To start, we return our attention to pairs of augmented tangle shadows. A tuple

.†; ˛1; ˛2; a1; a2;T
�
1;T

�
2;A

�
1;A

�
2;x/

is called a standard augmented splitting shadow if

� for each i D 1; 2, .†; ˛i ; ai ;T�i ;A
�
i ;x/ is a augmented tangle shadow;

� .†; ˛1; ˛2;T
�
1;T

�
2;x/ is a standard splitting shadow;
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� the components of T�1 [T�2 [A�1 [A�2 intersecting @† bound disjointly embedded polygonal
disks, each of which intersects @† in a single point; and

� a1 D a2.

See Figure 18 for an example of a standard augmented splitting shadow.

Definition 5.6 (augmented shadow diagram) An augmented .g;k; f; cIp;f ; v/–shadow diagram is
a tuple .†; ˛1; ˛2; ˛3; a1;T�1;T

�
2;T

�
3;A

�
1;x/, such that the tuple .†; ˛1; ˛2; ˛3;T�1;T

�
2;T

�
3;x/ is a

shadow diagram, and .†; ˛1; a1;T�1;A
�
1;x/ is an augmented tangle shadow.

A fully augmented .g;k; f; cIp;f ; v/–shadow diagram is a tuple

.†; ˛1; ˛2; ˛3; a1; a2; a3; a4;T
�
1;T

�
2;T

�
3;A

�
1;A

�
2;A

�
3;A

�
4;x/

such that the tuple .†; ˛1; ˛2; ˛3;T�1;T
�
2;T

�
3;x/ is a shadow diagram, the tuples .†; ˛1; a1;T�1;A

�
1;x/

and .†; ˛1; a4;T�1;A
�
4;x/ are augmented tangle shadows for the same tangle, and:

(1) For i D 1; 2, the diagram

.†; ˛i ; ˛iC1; ai ; aiC1;T
�
i ;T

�
iC1;A

�
i ;A

�
iC1;x/

is slide-equivalent to a standard augmented splitting shadow

.†; ˛0i ; ˛
0
iC1; a

0
i ; a
0
iC1; .T

�
i /
0; .T�iC1/

0; .A�i /
0; .A�iC1/

0;x/:

(2) The diagram
.†; ˛3; ˛1; a3; a4;T

�
3;T

�
1;A

�
3;A

�
4;x/

is slide-equivalent to a standard augmented splitting shadow

.†; ˛003 ; ˛
00
1 ; a
00
3; a
00
4; .T

�
3/
00; .T�1/

00; .A�3/
00; .A�4/

00;x/:

We say that an augmented shadow diagram is an augmenting of the underlying shadow diagram and that
a fully augmented shadow diagram is a full-augmenting of the underlying (augmented) shadow diagram.

We now describe how the data of an augmented shadow diagram allows us to recover the boundary
open-book braiding .Y;L/ of the corresponding bridge trisected pair @.X;F/. First, we note the following
crucial connection between augmented shadow diagrams and fully augmented shadow diagrams.

Proposition 5.7 There is an algorithmic way to complete an augmented shadow diagram to a fully
augmented shadow diagram , which is unique up to slide-equivalence.

Proof Start with an augmented shadow diagram .†; ˛1; ˛2; ˛3; a1;T
�
1;T

�
2;T

�
3;A

�
1;x/. Restrict at-

tention to the splitting shadow .†; ˛1; ˛2;T
�
1;T

�
2;x/. By definition, this diagram is slide-equivalent

to a standard splitting shadow .†; ˛01; ˛
0
2; .T

�
1/
0; .T�2/

0;x/. Choose a sequence of arc and curve slides
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Figure 20: Obtaining A�2 from .A�1/
0.

realizing this equivalence. Whenever a slide involving the arcs and curves of ˛1[T�1 is performed along
an arc ! that intersects a1[A�1 , first slide the offending arcs of a1[A�1 out of the way using the same
slide-arc !. Now the splitting shadow has been standardized, but the arcs of a1 [A�1 may intersect
the curves and arcs of ˛02 [ .T

�
2/
0. Intersections of a1 [A�1 with the curves of ˛02 can be removed via

slides over the curves of ˛01 dual to curves of ˛02. Recall that the closed components of .T�1/[ .T
�
2/
0 are

embedded polygonal curves, while the nonclosed components are embedded polygonal arcs. Moreover,
the arcs of A�1 connect one end of each polygonal arc to @†. Intersections of (the interior of) a1[A�1
with the polygonal curves of .T�1/[ .T

�
2/
0 can be removed via slides over the arcs of .T�1/

0 included in
these polygonal curves. Intersections of (the interior of) a1[A�1 with the polygonal arcs of .T�1/[ .T

�
2/
0

can be removed via slides over the arcs of .T�1/
0 included in these polygonal arc, provided one is careful

to slide towards the end of the polygonal arc that is not attached to A�1 .

Once the described slides have all been carried out, the collections a1 and A�1 of arcs will have been
transformed into new collections, which we denote by a01 and .A�1/

0, respectively. The key fact is that a01
and .A�1/

0 are disjoint (in their interiors) from the arcs and curves of ˛02[ .T
�
2/
0. Set a2 D a01, and note

that a2 has the desired property of being (vacuously) slide-equivalent to a02 D a01. To define A�2 , note
that at this point the union of the polygonal arcs of .T�1/

0[ .T�2/
0 with .A�1/

0 is a collection of embedded
“augmented” polygonal arcs each of which intersects @† in a single point. Let A�2 be the collection of
arcs obtained by pushing each augmented polygonal arc off itself slightly, while preserving its endpoint
that lies in the interior of †. See Figure 20. This can be thought of as sliding the endpoint of .A�1/

0 that
lies in the interior of † along the polygonal arc of .T�1/

0[ .T�2/
0 that it intersects until it reaches the end.

Having carried out these steps, we have that .†; ˛01; ˛
0
2; a
0
1; a2; .T

�
1/
0; .T�2/

0; .A�1/
0;A�2;x/ is a standard

augmented splitting shadow, as desired.

Next, we repeat the process outlined in the first two paragraph, starting this time with the splitting shadow
.†; ˛02; ˛3; .T

�
2/
0;T�3;x/: Standardize the splitting shadow, and include the arcs of a2[A�2 in the slides

when necessary. Perform additional slides to obtain the new collection of arcs a02, and .A�2/
0 whose

interiors are disjoint from all other arcs and curves. Let a3 D a02, and obtain A�3 from .A�2/
0 in the

same way as before, so that the new diagram .†; ˛002 ; ˛
0
3; a
0
2; a3; .T

�
2/
00; .T�3/

0; .A�2/
0;A�3;x/ is a standard

augmented splitting shadow, as desired. Note that .†; ˛002 ; .T
�
2/
00;x/ is slide-equivalent to the original

diagram .†; ˛2;T
�
2;x/.
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Finally, repeat the process once more, starting with the splitting shadow .†; ˛03; ˛
0
1; .T

�
3/
0; .T�1/

0;x/

and performing slides until we can obtain new collections a4 and A�4 from the modified collections a03
and .A�3/

0, as before. At this point, there is a minor wrinkle. We are not finished once we set a4 D a03
and obtain A�4 from .A�3/

0 as before. The reason is that these choices for a4 and A4 might not be
compatible with the original tangle shadow .†; ˛1;T

�
1;x/, rather these choices are compatible with the

slide-equivalent tangle shadow .†; ˛001 ; .T
�
1/
00;x/. To remedy this issue, we perform the slides to change

this latter tangle shadow to the former one, and we carry a4 and A�4 with us along the way, sliding them
over arcs and curves when necessary. In abuse of notation, we denote the results of this transformation a4

and A�4 .

In summary, we have produce the collections of arcs a2, a3, a4, A�2 , A�3 , and A�4 required to fully augment
the original augmented shadow diagram.

To establish uniqueness, suppose .a2; a3; a4;A�2;A
�
3;A

�
4/ and .Na2; Na3; Na4;A�2;A

�
3;A

�
4/ are two sets of

full-augmentation arcs for the given augmented shadow diagram. By surgering † along the corresponding
arcs and curves of ˛i [T�i , we can regard the augmentation arcs as lying on Pi . By definition, there is a
vertical isotopy taking ai [A�i on Pi to aiC1 [A�iC1 on PiC1 through Hi [HiC1. The same is true
for NaiC1[A�iC1, so it follows that aiC1[A�iC1 and NaiC1[A�iC1 can be isotoped to agree on P2 via a
vertical isotopy in HiC1. Working sequentially, it follows that the two collections of full-augmenting arcs
are slide-equivalent, as claimed.

Following Castro, Gay, and Pinzón-Caicedo, we refer to the above algorithm as the monodromy algorithm.
What follows a is generalization of the discussion of [11, Section 3]; see also [6, Section 4; 8, Section 2].

Given an augmented shadow diagram DD .†; ˛1; ˛2; ˛3; a1;T
�
1;T

�
2;T

�
3;A

�
1;x/, let .H;T/ denote the

tangle determined by the tangle shadow .†; ˛1;T
�
1;x/. Let .P;y/D D @�.H;T/. We call .P;y/D the

page of the shadow diagram. Fix an identification Id W .P;y/D! .†p;f ;xp;f /. We use the standard
Morse structure on H to consider a1 and A�1 as lying in P . Consider the arcs aD Id.a1/, which cut the
standard surface into a collection of disks, and the arcs A� D Id.A�1/, which connect the marked points
to the boundary in the standard pair.

Let DC D .†; ˛1; ˛2; ˛3; a1; a2; a3; a4;T
�
1;T

�
2;T

�
3;A

�
1;A

�
2;A

�
3;A

�
4;x/ be a full-augmenting of D.

We consider the arcs a4 and A�4 as lying in P , as well. Consider the arcs a0 D Id.a4/ and the arcs
.A�/0 D Id.A�4/. Let �D be the automorphism of .†p;f ;xp;f / satisfying �D.a[A�/ D a0 [ .A�/0,
noting that �D is unique up to isotopy. We call �D the monodromy of the shadow diagram.

Lemma 5.8 The monodromy �D is determined up to conjugation by the shadow diagram D.

Proof Proposition 5.7 shows that the arcs a4[A�4 are uniquely determined (up to slide-equivalence)
by the choice of augmentation arcs a1[A�1 . This means that the arcs a4[A�4 are determined uniquely
up to isotopy when considered relative to a1[A�1 on .P;y/. Now, the choice of a1[A�1 determines a
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parametrization of .P;y/, and this choice is equivalent to a choice of product structure on .H;T/ near
.P;y/. The important thing is that this product structure is fixed by the choice of a1[A�1 , and a4[A�4
is considered relative to this choice. So, if a different choice of a1 [A�1 were made, there would be
a diffeomorphism of .P;y/ between the two choices, and this diffeomorphism would also relate the
corresponding choices for a4[A�4 . Therefore, the monodromy is determined up to conjugation by D.

The relevance of �D is given in the following proposition; we refer the reader to Section 2.8 for relevant
notation and terminology regarding open-book decompositions and braidings. The following is a general-
ization of [6, Theorem 5] and [11, Lemma 3.1]. Note that up to this point, we have neglected the fact that,
as oriented manifolds, @.Hi ;Ti /D .†;x/[ .Pi ;yi /, while @.Yi ; ˇi /D .Pi ;yi /[ .PiC1;yiC1/. This
fact manifests importantly in the next theorem, where we relate the monodromy of a shadow diagram to
the monodromy of the boundary braiding of a trisection; care is taken with orientations here.

Proposition 5.9 Suppose that D is a shadow diagram for a bridge trisection T of a pair .X;F/. Let
�D denote the monodromy of the shadow diagram , and let .Y�D ;L�D/ denote the model open-book
braiding corresponding to the abstract open-book braiding .†p;f ;xp;f ; �D/. Then there is an orientation-
preserving diffeomorphism

 D W @.X;F/! .Y�D ;L�D/:

Proof Let .H1;T1/[ .H2;T2/[ .H3;T3/ denote the spine of the bridge trisection determined by the
diagram D; recalling Propositions 2.22 and 5.4. Fix an identification  W .P1;y1/! .†p;f ;xp;f / and
regard this latter pair as a page .P;y/� f0g in the model open-book braiding .Y�D ;L�D/, which we
think of as .P;y/��D S

1. Note that .Y�D ;L�D/ is well-defined, because �D is determined by D up to
conjugation.

Choose an augmenting of D by picking arcs a1 and A�1 , which we consider as having been isotoped
vertically to lie in .P1;y1/. Let a�f0g and A� �f0g denote the arcs on .P;y/�f0g that are the images
of a1 and A�1 under  . Apply the monodromy algorithm of Proposition 5.9 to obtain a full-augmenting
of D. Consider the arcs a01, .A�1/

0, and .A�2/
0 coming from the standard augmented splitting diagram for

.M1; K1/D .H1;T1/[.†;x/ .H2;T2/;

noting that, regarded as arcs in .P1;y1/, a1 and a01 are isotopic rel-@, as are A�1 and .A�1/
0. These arcs

determine the identity map Id.M1;K1;†/ described in Lemma 2.12. In particular, this gives a unique
extension of  to a diffeomorphism from the spread .Y1; ˇ1/ in @.X;F/ to the spread .P;y/�

�
2
3
; 1
�

in .Y�D ;L�D/. The strange parametrization of the interval is due to the fact that .P1;y1/ is positively
oriented in @.Y1; ˇ1/, so we match it to the positively oriented end .P;y/� f1g.

Repeating the step described above (i D 1) for i D 2 and i D 3— using intervals
�
1
3
; 2
3

�
and

�
0; 1
3

�
—

allows us to extend  1 to a map  D whose domain is the entire boundary

@.X;F/D .Y1; ˇ1/[ .Y2; ˇ2/[ .Y3; ˇ3/
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and whose codomain is .P;y/� Œ0; 1�, equipped with the identification .x; 1/� .�0.x/; 0/, where �0 must
take the arcs a1[A�1 to the arcs a4[A�4 , in order for  D to be continuous. However, this implies that
�0 is isotopic rel-@ to �D, by definition, and we have that  D respects the original identification space
structure on .Y�D ;L�D/, hence is a diffeomorphism, as desired.

Example 5.10 (Möbius band for the trefoil) Figure 21(a) shows a shadow diagram corresponding to
the bridge trisection of the Möbius band bounded by the right-handed trefoil in S3 that was discussed in
Example 3.16; cf Figure 14. Since this is a .2I 0; 2/–bridge trisection, we have that .P;y/D @�.H1;T1/
is a disk with two distinguished points in its interior. This pair is shown in Figure 21(d), together with a
pair of arcs that connect the points y to @P . Using the Morse function on .H1;T1/, these arcs can be
flowed rel-@ to lie in †, as shown in Figure 21(e). Note that H1 induces opposite orientations on P1
and †, hence the indicated reflection between (c) and (d) of Figure 21. In Figure 21(f), the shadows for
.H2;T2/ have been added, making an splitting shadow for .M1; K1/, which is a geometric 2–braid in
D2 � I , one component of which is twice-perturbed, while the other is not perturbed. In Figure 21(g), a
slide of an arc of A�1 has been performed to arrange that all arcs are disjoint in their interiors, and the
arcs of A�2 have been obtained, as described in the proof of Proposition 5.9; this is an augmented splitting
shadow for .M1; K1/. Figure 21(h) shows a splitting shadow for .M2; K2/, with A�2 remembered, and
since all arcs are disjoint in their interiors, the arcs of A�3 have been derived. Figure 21(i) shows a splitting
shadow for .M3; K3/, with the arcs of A�3 remembered, and Figure 21(j) is obtained from this diagram
by arc slides of arcs from T�3 [A�3 , before A�4 is obtained. In Figure 21(k), the arcs of A�1 and A�4 are
shown with the arcs of T�1 in †. Figure 21(l) shows the result of flowing A�1 [A�4 up to the page .P;y/.

Figure 21(l) allows us to see that the braiding induced on the boundary of the bridge trisection is
diffeomorphic to the abstract open-book .P;y; �31 /, where P is a disk, y is two points, and �1 is a
positive braid transposition of the two points of y . This derivation is a shadow diagram version of the
calculation of this braiding given in Example 3.16 and Figure 14.

Example 5.11 (disk for the trefoil in .CP2/ı) Figure 22(a) shows a shadow diagram corresponding
to a bridge trisection of a disk bounded by the right-handed trefoil in .CP2/ı, the result of removing a
neighborhood of a point from CP2. The two circles represent the foot of a handle for the surface † and
are identified via vertical reflection. If one forgets the bridge points x and all shadow arcs, one obtains a
.1; 0I 0; 1/–trisection diagram for this four-manifold. The bridge trisection itself is type .2; .0; 1; 0/I 2/;
the union of the blue and green shadows includes a bigon. As in the previous example, we have that
.P;y/ D @�.H1;T1/ is a disk with two distinguished points in its interior. This pair is shown in
Figure 22(d), together with a pair of arcs that connect the points y to @P . Using the Morse function on
.H1;T2/, these arcs can be flowed rel-@ to lie in†, as shown in Figure 22(e). In Figure 22(f), the shadows
for .H2;T2/ have been added, giving a splitting shadow for .M1; K1/, which is a geometric 2–braid in
D2�I , one component of which is twice-perturbed with respect to the once-stabilized Heegaard splitting
of this spread. In Figure 22(g), a number of arc slides of T�1 [A�1 have been performed to arrange
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 21: A shadow diagram (a), an augmented shadow diagram (b), and a fully augmented
shadow diagram (c) for a bridge trisection for the Möbius band bounded by the right-handed
trefoil in S3. Diagrams (e)–(k) illustrate the process described by the monodromy algorithm of
Proposition 5.9, used to find the full-augmenting (c) of the augmented shadow diagram (b). We
recover the braiding induced on the boundary of the bridge trisection by studying (l), which shows
the arcs a and a0 in the page .P;Y /.

that all arcs and curves are disjoint in their interiors, save the standard curve pair ˛1 [ ˛2. From this
standard splitting shadow, the arcs of A�2 have been obtained, as described in the proof of Proposition 5.9.
Figure 22(h) shows a splitting shadow for .M2; K2/, with A�2 remembered. Figure 22(i) shows the
standard augmented splitting shadow resulting from a number or arc slides, together with the arcs of A�3 .
Figure 22(j) shows a splitting shadow for .M3; K3/, with the arcs of A�2 remembered, and Figure 22(k)
shows a slide-equivalent standard splitting shadow, with A�ı derived. In Figure 22(l), the arcs of A�1 and
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(a) (b) (c)
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(d) (e) (f)

h

h

h

h

h

h

(g) (h) (i)

h

h

h

h

h

h

(j) (k) (l)

(m)

Figure 22: A shadow diagram (a), an augmented shadow diagram (b), and a fully augmented
shadow diagram for a bridge trisection for the disk bounded by the right-handed trefoil in .CP2/ı.
Diagrams (d)–(m) illustrate the process described by the monodromy algorithm of Proposition 5.9,
used to find a full-augmenting of a shadow diagram and recover the braiding induced on the
boundary of the bridge trisection.
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Figure 23: A three-dimensional rendering of the shadow diagram in Figure 22(a) corresponding
to the disk bounded by the right-handed trefoil in .CP2/ı.

A�ı are shown with the arcs and curves of the original tangle shadow for .H1;T1/ in †. Figure 22(m)
shows the result of flowing A�1 [A�ı up to the page .P;y/.

Figure 22(m) allows us to see that the braiding induced on the boundary of the bridge trisection is
diffeomorphic to the abstract open-book .P;y; �31 /, where P is a disk, y is two points, and �1 is a
right-handed braid transposition of the two points of y . This proves that this bridge trisection corresponds
to a surface bounded by the right-handed trefoil in .CP2/ı. From the bridge trisection parameters, we
conclude that the surface is a disk, since it has Euler characteristic one and is connected.

A three-dimensional rendering for this example is given in Figure 23. The ambient 3–manifold is
S3 D @.CP2/ı, equipped with the Heegaard-page structure coming from the compression body H1;0;1.
The right-handed trefoil is in 2–braid position, and perturbed twice with respect to the genus one Heegaard
surface †. (Note that † is oriented as @H1.) The closed curve shown in blue is the belt-sphere for the
2–handle that is attached to a 0–cell B4 to build .CP2/ı. The curve lies on † with surface-framing �1.
This reflects the fact that .CP2/ı can be thought of as being built from S3 � Œ�1; 0� by attaching a
.C1/–framed 2–handle along the corresponding curve in the mirror manifold S3 � f�1g, before capping
off with a 0–handle below. A single band is shown for the boundary knot, but this band is a helper-band in
the sense of Remarks 3.6 and 3.10 and Section 3.3 more generally. In fact, relative to the Morse function
on .CP2/ı, the disk bounded by the trefoil can be (and has been) assumed to have no saddle points, just a
single minimum. However, the Morse function on .CP2/ı coming from the bridge trisection will require
the disk to be built from a pair of vertical disks (since we require a 2–braid on the boundary), and the
helper-band joins these disks together. Compare with the Morse-theoretic proof of Theorem 8.1.
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6 Gluing bridge trisected surfaces and shadow diagrams

In this section, we describe how to glue bridge trisected surfaces along portions of their boundary in a way
that respects the bridge trisection structure. The gluing of trisections was first discussed by Castro [5],
with further development given by Castro and Ozbagci [8] and by the author and Gay [11]. We conclude
this section with some examples of simple gluings of bridge trisected pairs with disconnected boundary, as
well as a more complicated example involving the surfaces bounded by the right-handed trefoil discussed
above. We refer the reader to Section 5 for necessary concepts related to shadow diagrams.

The development below is a generalization of previous developments to the setting of bridge trisections for
four-manifold pairs and is complicated by the fact that we allow the four-manifolds being glued to have
multiple boundary components and for the gluings to involve proper submanifolds of these boundaries. To
account for this, we will allow our gluing maps to be partial diffeomorphisms, which means that they may
be defined on proper subsets of their domain. This subset is called the domain of definition of the map;
the image of the domain of definition is called the range, and may be a proper subset of the codomain.
The domain of definition and range of our partial diffeomorphisms will always be closed submanifolds of
the domain and codomain, respectively.

Let T be a bridge trisection of a pair .X;F/, and let D be a shadow diagram for T . Let .P;y/ D
@�.H1;T1/, and let �D W .P;y/! .P;y/ be the monodromy automorphism determined by D according
to Proposition 5.7. Let  D W @.X;F/! .Y�D ;L�D/ be the diffeomorphism given by Proposition 5.9,
where .Y�D ;L�D/ is the model pair of the abstract open-book .P;y; �D/. We note that both �D and
 D depend on the underlying bridge trisection T , and are determined up to postcomposing with an
automorphism of .P;y/. Thus, we might as well denote these maps by �T and  T ; we will adopt either
decoration, depending on whether we wish to emphasize the shadow diagram or the underlying bridge
trisection.

We work in the generality of bridge trisected pairs with disconnected boundary, so we emphasize the
decomposition

.Y;L/D .Y 1;L1/t � � � t .Y n;Ln/

of .Y;L/D @.X;F/ into connected components of Y ; for any connected component Y j of Y , we may
have Lj disconnected — ie a link. Thus, we have corresponding decomposition of the pairs .P;y/,
.P�T ;y�T /, and .Y�T ;L�T /, and of the maps �T and  T .

Our first result is that bridge trisections that induce diffeomorphic braidings on some portion of their
boundaries can be glued along those boundaries to obtain a new bridge trisection. By a diffeomorphism of
open-book braidings we mean a diffeomorphism of three-manifold pairs that restricts to a diffeomorphism
of pages (hence, commutes with the monodromies).
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Proposition 6.1 Let T 0 and T 00 be bridge trisections for pairs .X 0;F0/ and .X 00;F00/. Suppose we have
an orientation-reversing partial diffeomorphism of open-book braidings ‰ W @.X 0;F0/! @.X 00;F00/. Then
the pair .X;F/D .X 0;F0/[‰ .X 00;F00/ inherits a canonical bridge trisection T D T 0[‰ T 00.

Proof Let .Y 0;L0/ and .Y 00;L00/ denote the domain of definition and range of ‰, respectively, noting
that these are closed (possibly proper) submanifolds of @.X 0;F0/ and @.X 00;F00/, respectively.

After potentially changing ‰ by an isotopy through diffeomorphisms of open-book braidings, we can
assume that ‰.P 0i ;y

0
i /D .P

00
i ;y

00
i / for each i 2 Z3. We will verify that gluing the various corresponding

pieces of T 0 and T 00 together according to ‰ results in a collection of pieces giving a bridge trisection
of .X;F/.

Consider the restriction of ‰ to the binding B 0 of the open-book decomposition of .Y 0;L0/, recalling
that B 0 D @.†0;x0/ and B 00 D‰.B 0/D @.†00;x00/. Let .†;x/D .†0;x0/[‰ .†00;x00/, which is simply
the union of two surfaces with marked points and boundary along closed subsets of their respective
boundaries, hence a new surface with marked points and (possibly empty) boundary.

Consider the restriction of ‰ to the pages P 0i for each i 2 Z3, recalling that .P 0i ;y
0
i /D @.H

0
i ;T
0
i / and

.P 00i ;y
00
i /D‰.P

0
i ;y
0
i /D @.H

00
i ;T

00
i /. Let .Hi ;Ti /D .H 0i ;T

0
i /[‰.P 0

i
;y0
i
/
.H 00i ;T

00
i /, noting that

@.Hi ;Ti /D .†;x/[B
�
.@�.H

0
i ;T
0
i / n .P

0
i ;y
0//t .@�.H

00
i ;T

00
i / n .P

00
i ;y

00//
�
:

(A word of caution regarding notation: The fact that we are considering gluings along potentially strict
subsets of the boundaries complicates the exposition notationally. For example, earlier in the paper, we
would have written .P 0i ;y

0
i /D @�.H

0
i ;T
0
i /, but here we regard .P 0i ;y

0
i /� @�.H

0
i ;T
0
i / as the portion of

@�.H
0
i ;T
0
i / lying in the domain of definition.)

For each i 2 Z3, let a0i be a neatly embedded collection of arcs in P 0i ny 0i such that surgery along the
arcs reduces P 0i to a collection of disks with the number of connected components as P 0i . Moreover,
we require that a0i and a0iC1 be isotopic rel-@ in Y 0 nL0 via an isotopy that is monotonic with respect to
the open-book structure. Let a00i D ‰.a

0
i /. For each i 2 Z3, let Ai be an embedded collection of arcs

connecting the points of y 0i to @P 0i , and assume, as before, that A0i and A0iC1 are isotopic via an isotopy
that fixes A0i \ @P

0
i and is monotonic with respect to the open-book-braiding structure; the free endpoints

of A0i will move along L0. Let A00i D‰.A
0
i /.

Using the Morse structure on .H 0i ;T
0
i /, flow the arcs of a0i and A0i down to †0, and denote the results

.a�i /
0 and .A�i /

0, respectively. Let E 0i and T 0i denote the traces of the respective isotopies, noting that the
E 0i are compression disks for the H 0i , and that the T 0i are bridge triangles for the vertical strands y 0i � Œ0; 1�.
Do the same for a00i and A00i to obtain .a�i /

00 and .A�i /
00 on †00, with corresponding traces E 00i and T 00i .

Let D0i and D00i be collections of neatly embedded disks in H 0i and H 00i , respectively, such that surgery
alongD0i andD00i reducesH 0i andH 00i , respectively, to spreads @�.H 0i ;T

0
i /�Œ0; 1� and @�.H 00i ;T

00
i /�Œ0; 1�.
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For each connected component of .P 0i ;y
0/, pick a disk of D0i adjacent to that component in the sense that

one of the two scars resulting from surgery along the chosen disk lies in the corresponding component of
.P 0i ;y

0/� Œ0; 1�. (Equivalently, the chosen disk is the cocore of a 1–handle connecting the component of
.P 0i ;y

0/� Œ0; 1� to another component of the spread obtained by surgery.) Let F 0i �D
0
i denote the chosen

disks. Then, we claim that
Di D .D

0
i nF

0
i /t .E

0
i [‰ E

00
i /tD

00
i

is a collection of compression disks in Hi such that surgery along Di reduces Hi to

.@�.H
0
i / nP

0
i /t .@�.H

00
i / nP

00
i /:

To see that this is the case, note that the result of surgering Hi along Di tF 0i is precisely�
.@�.H

0
i / nP

0
i /� Œ0; 1�

�
t

�G
m0

D2 � Œ0; 1�

�
t
�
.@�.H

00
i / nP

00
i /� Œ0; 1�

�
;

where m0 is the number of connected components of Y 0i , P
0
i , and F 0i . The effect of removing the disks

of F 0i from this collection of compression disk is to attach 1–handles, one for each D2 � Œ0; 1� in the
above decomposition, connecting the m0 copies of D2� Œ0; 1� to the rest of the spread. It follows that Hi
is a compression body with @CHi D† and @�.Hi /D .@�.H 0i / nP

0
i /t .@�.H

00
i / nP

00
i /, as desired.

Moreover, let �0i and �00i be bridge disks for the flat strands of T0i and T00i , respectively. Then,

�i D�
0
i t .T

0
i [‰ T

00
i /t�

00
i

is a collection of bridge semidisks and triangles for the strands of T0i [‰ T00i in Hi . The key thing to note
here is that the bridge triangles T 0i for the vertical strands y 0i � Œ0; 1� glue to the corresponding bridge
triangles T 00i for the vertical strands of y 00i � Œ0; 1� along the identified arcs A0i [‰ A00i to give bridge disks
for the new flat strands .y 0i � Œ0; 1�/[‰ .y

00
i � Œ0; 1�/.

Finally, consider the restriction of ‰ to the spreads .Y 0i ; ˇ
0
i / cobounded by .P 0i ;y

0
i / and .P 0iC1;y

0
iC1/

in .Y 0;L/, recalling that .Y 0i ; ˇ
0
i / D .Z

0
i ;D
0
i /\ @.X

0;F0/, and noting that ‰.Y 0i ; ˇ
0
i / D .Y

00
i ; ˇ

00
i /. Let

.Zi ;Di / D .Z
0
i ;D
0
i /[‰ .Z

00
i ;D

00
i / for each i 2 Z3. We claim that the fact that the .Zi ;Di / are trivial

disk-tangles follows easily from the detailed argument just given that the .Hi ;Ti / are trivial tangles. The
reason is that a trivial disk-tangle .Z;D/ can be naturally viewed as the lensed product .H;T/�Œ0; 1� such
that the decomposition of @.H;T/D .S;x/[@S .P;y/ gives rise to a bridge-braid structure on @.Z;D/.
Precisely, the lensed product .Hg;p;f ;Tb;v/� Œ0; 1� is .Zg;kIp;f ;DcIv/, where k D gCpCf �n and
n is the length of the partition p. The structure on the boundary is that of a symmetric Heegaard double.
Moreover, we have that @�.Z;D/D @�.H;T/� Œ0; 1�, so gluing two trivial disk-tangles along a portion
of their negative boundaries is the same as gluing the corresponding trivial tangles (of which the trivial
disk-tangles are lensed products) along the corresponding portions of their negative boundaries, then
taking the product with the interval. Succinctly, the gluings along portions of the negative boundaries
commute with the taking of the products with the interval. Therefore, the .Zi ;Di / are trivial disk-tangles,
as desired.
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It remains only to verify that .Zi ;Di /\ .Zi�1;Di�1/ D .Hi ;Ti / and .Hi ;Ti /\ .HiC1;TiC1/ D †,
but this is immediate.

Remark 6.2 Proposition 6.1 holds in the case that T 0 D T 00 and ‰ is a (partial) self -gluing! See
Example 6.6 below.

Having established how to glue bridge trisections from the vantage point of bridge trisected pairs, we
now turn our attention to understanding gluings diagrammatically. Suppose that T 0 and T 00 are bridge
trisections of pairs .X 0;F0/ and .X 00;F00/ with augmented shadow diagrams D0 and D00, respectively.
Let f W @.†; a01; .A

�
1/
0/! @.†0; a01; .A

�
1/
0/ be an orientation-reversing partial diffeomorphism. We call

D0 and D00 gluing compatible if there is an orientation-reversing partial diffeomorphism

 f .D
0;D00/ W .P 01;y

0
1/! .P 001 ;y

00
1 /

that extends f and commutes with the monodromies of the diagrams — ie  f .D0;D00/ ı�D0 D �D00 —
where this composition is defined. In this case, we call f a compatible (partial) gluing.

The map  f .D0;D00/ determines an orientation-reversing (partial) diffeomorphism

‡f .D
0;D00/ W .Y�D0 ;L�D0 /! .Y�D00 ;L�D00 /

of abstract open-book braidings. So, we can define a (partial) gluing map

‰f .D
0;D00/ W @.X 0;F0/! @.X 00;F00/

of the bridge trisected pairs by

‰f .D
0;D00/D  �1D00 ı‡f .D

0;D00/ ı D0 :

Again, we are interested in partial boundary-gluings, so we reiterate that the above caveats regarding the
domain and codomain apply to ‰f .D0;D00/. Given this set-up, we can now describe how gluing shadow
diagrams corresponds to gluing bridge trisected four-manifold pairs.

Proposition 6.3 Suppose that T 0 and T 00 are bridge trisections of four-manifold pairs .X 0;F0/ and
.X 00;F00/, respectively , and that the corresponding fully augmented shadow diagrams D0 and D00 admit a
compatible gluing f . Let DDD0[f D00, and let .X;F/D .X 0;F0/[‰f .D0;D00/ .X

00;F00/. Then D is a
fully augmented shadow diagram for the bridge trisection on .X;F/ given in Proposition 6.1, once it is
modified in the following ways:

(1) The arcs of .a4/0 t .A�4/
0 and .a4/00 t .A�4/

00 whose endpoints lie in the domain of definition and
range of f should be deleted.

(2) If @X 00 is disconnected , then , for each component Y 00 of the range of ‰f .D0;D00/ there is a
subcollection of curves of ˛00i , for each i 2Z3, that separate the components of @†00 corresponding
to Y 00 from the other components of @†00. Throw out one curve from the subcollection of curves
corresponding to each connected component of the range of ‰f .D0;D00/.
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(3) If @X 00 is connected but @X 0 is disconnected , then , for each component Y 0 of the domain of
definition of ‰f .D0;D00/ there is a subcollection of curves of ˛0i , for each i 2 Z3, that separate
the components of @†0 corresponding to Y 0 from the other components of @†0. Throw out one
curve from the subcollection of curves corresponding to each connected component of the domain
of definition of ‰f .D0;D00/.

Proof The first modifications required above is a minor issue. If this is not done, then the would-be-
deleted arcs give rise to extra shadows and curves that are redundant in the encoding of the trivial tangle
.H1;T1/. The next two modifications are more serious, and are required to ensure that the resulting
diagram is a shadow diagram. The rationale was made clear in the proof of Proposition 6.1, where this
precise discarding was carried out at the level of compression disks. Note that only one of the final two
modification will need to be made in practice.

The rest of the proof follows from the proof of Proposition 6.1, as applied to the gluing ‰f .D0;D00/.

We conclude this section with some examples illustrating gluings of bridge trisected four-manifold pairs.

Example 6.4 First, we recall the bridge trisected surfaces bounded by the right-handed trefoil discussed in
Examples 5.10 and 5.11. Let D0 denote the fully augmented shadow diagram in Figure 24, top left, which
corresponds to a bridge trisection of the pair .X 0;F0/, where F0 is a disk bounded by the right-handed
trefoil in X 0 D .CP2/ı. Let D00 denote the fully augmented shadow diagram in Figure 24, top right,
which corresponds to the pair .X 00;F00/, where F00 is the Möbius band bounded by the left-handed trefoil
in S3, which we imagine as being perturbed so that its interior lies in X 00 D B4. Note that D00 is the
mirror of the diagram shown in Figure 21(c). Orientations for the boundaries of the diagrams are shown.

These bridge trisections induce open-book braidings on the boundaries of their corresponding manifold
pairs that are orientation-reversing diffeomorphic. Both open-book braidings have disk page and boundary
link in 2–braid position: For D0, the monodromy is three positive half-twists about the two braid points.
This was described in Example 5.11 and Figure 22. However, for D00, the half-twists are negative, since
D00 is the mirror of the diagram discussed in Example 5.10 and Figure 21.

Let f W @D0! @D00 be the orientation-reversing diffeomorphism that matches the endpoints of the arcs
.A�1/

0 with those of .A�1/
00. There is an orientation-reversing diffeomorphism

 f .D
0;D00/ W .P 01;y

0
1/! .P 002 ;y

00
2 /

that extends f ; simply pick the obvious diffeomorphism relating the pair in Figure 22(d) to the mirror of
the pair in Figure 21(d). It follows that is a compatible gluing corresponding to an orientation-reversing
diffeomorphism ‰f .D

0;D00/.

Let .X;F/D .X 0;F0/[‰f .D0;D00/ .X
00;F00/. By Proposition 6.3, the DDD0[f D00 shown in Figure 24,

bottom left, is a shadow diagram for .X;F/. Observe how the arcs .A�4/
0 and .A�4/

00 have been discarded
according with the first modification required by Proposition 6.3. (The second and third modification are
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Figure 24: Top left: a shadow diagram for the disk bounded by the right-handed trefoil in .CP2/ı.
Top right: a shadow diagram for the Möbius band bounded by the right-handed trefoil in B4.
Bottom left: the result of gluing these diagrams via the unique compatible gluing — a shadow
diagram for a projective plane in CP2. The bottom right is obtained from the bottom left by
deperturbing along the indicated shadows; see Section 9.2 for relevant definitions.

not necessary in this example, since @X 0 and @X 00 are connected.) A brief examination reveals that this
diagram can be deperturbed three times, using the indicated shadows. (See Section 9 for details about
perturbation.) Doing so produces the diagram of Figure 24, bottom right.

We have thatX ŠCP2 and FŠRP2, but it is not true that .X;F/Š .CP2;RP2/, where the latter pair is
the projectivization of the standard pair .C3;R3/. The standard projective pair .CP2;RP2/ is depicted in
[28, Figure 2]. One way to distinguish these two pairs is to note that F has normal Euler numberC6, while
RP2 has normal Euler number C2. Moreover, �1.X n �.F//Š Z=2Z, while �1.CP2 n �.RP2//Š 1.
These facts are left as exercises to the reader.

Example 6.5 Consider the shadow diagram D0 shown in Figure 25, top left, which corresponds to a
bridge trisection of the cylinder pair .X 0;F0/D .S3�I; S1�I /. The underlying trisection of S3�I can
be thought of as follows. If one “trisects” S3 into three three-balls, which meet pairwise along disk pages
of the open-book decomposition with unknotted boundary — so the triple intersection of the three-balls is
this binding — then the trisection of S3 � I can be thought of as the product of this “trisection” of S3

with the interval, and the core † is simply the product of the binding with the interval. So, the diagram
D0 can be thought of as a bridge trisection for a copy F of †. To carry this out, the copy F of the annular
core must be perturbed relative the original copy † of the core. We leave it as an exercise to the reader to
verify that D0 describes the cylinder pair, as claimed.
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f

Figure 25: Top left: a shadow diagram for S3 � I . Top right: A copy of this diagram and a copy
of its mirror, with compatible gluing f indicated. Bottom left: the result of the gluing, S3 � I .
The bottom right is obtained from the bottom left by deperturbing along the indicated shadows.

Now, let D00 denote a mirror copy of D0 that corresponds to a second copy of cylinder pair,

.X 00;F00/D .S3 � I; S1 � I /:

Each of the two boundary components of both .X 0;F0/ and .X 00;F00/ have induced open-book braidings
with page a disk with one braid point. Let f W @D0! @D00 be the orientation-reversing partial diffeomor-
phism shown in Figure 25, top right — ie f maps the boundary component S1�f1g of D0 to the boundary
component S1 � f0g of D00. Trivially, f extends to an orientation-reversing partial diffeomorphism
 f .D

0;D00/ W .P 01;y
0
1/! .P 002 ;y

00
2 / between the page pairs corresponding to the boundary components

of the chosen boundary components of D0 and D00. Thus, we have an orientation-reversing partial
diffeomorphism ‰f .D

0;D00/ W @.X 0;F0/! @.X 00;F00/.

Let .X;F/ D .X 0;F0/[‰f .D0;D00/ .X
00;F00/. By Proposition 6.3, the diagram D D D0 [f D00 shown

in Figure 25, bottom left, is a shadow diagram for .X;F/. Note that one curve of each color has been
discarded in accordance with modification (2). As before, the diagram obtained from gluing can be
deperturbed. (This is a common phenomenon when gluing shadow diagrams.) The diagram obtained after
deperturbing (and performing slides), shown in Figure 25, bottom right, is diffeomorphic to the original
diagram D0. Of course, .X;F/Š .S3 � I; S1 � I /.

In this example, modification (1) of Proposition 6.3 is implicit; the arcs a04, .A�4/
0, a004, and .A�4/

00 were
never drawn and were never needed. More interestingly, we see how modification (2) is required. The
curves of D00 have been discarded upon gluing. Had this not been done, there would have been parallel
curves in ˛i for each i 2 Z3. This would imply that Pi D @�Hi would have a two-sphere component,
which is not allowed.

Example 6.6 Finally, we consider two more compatible gluings involving D0. First, let D00 denote a
mirror copy of D0, and let f W @D0 ! @D00 be the compatible gluing shown in Figure 26, top middle.
This compatible gluing is similar to the one explored in Example 6.5, but this time f is not a partial
diffeomorphism. The induced gluing ‰f .D0;D00/ matches the two boundary components of .X;F/ with
the corresponding components of .X 00;F00/. As a result, .X;F/D .X 0;F0/[‰f .D0;D00/ .X

00;F00/ is the
closed four-manifold pair .S3 �S1; S1 �S1/, and the diagram DDD0[f D00 for this pair is shown in
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f

f

Figure 26: Top left: a shadow diagram for S3� I . Top middle: a copy of this diagram and a copy
of its mirror, with compatible gluing f indicated. Top right: the result of the gluing, S3 � S1.
Bottom left: a compatible self-gluing of the diagram. Bottom right: the result of the self gluing,
S3 � S1. The bottom right is obtained from the top right by deperturbing along the indicated
shadows.

Figure 26, top right. As in Example 6.5, the redundant arcs have been suppressed, and the curves ˛00i have
been discarded upon gluing. Also, we can again deperturb, arriving at the diagram of Figure 26, bottom
right.

Now, let f denote the compatible self-gluing shown in Figure 26, bottom left. The induced self-map of
.S3�I; S1�I / is ‰f .D0/ W .S3�f0g; S1�f0g/! .S3�f1g; S1�f1g/. The diagram resulting from the
compatible self-gluing f is the diagram of Figure 26, bottom right, which describes .S3 �S1; S1 �S1/,
as noted before.

7 Classification and examples

In this section, we classify .b; cI v/–bridge trisections in the trivial cases where one or more of the
parameters is sufficiently small. Then, we present families of examples representing more interesting
choices of parameters and pose questions about further possible classification results. To get started, we
discuss the connected sum and boundary connected sum operations, then we introduce some notions of
reducibility for bridge trisections.
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7.1 Connected sum of bridge trisections

Given trisections T 0 and T 00 for four-manifolds X 0 and X 00, it is straightforward to see that there is a
trisection T D T 0 # T 00 describing X 0 #X 00. Let " 2 f0;00 g. All that needs to be done is to choose the
points x" 2 X" that determine the connected sum to lie on the respective cores. Having done so, the
pieces of the trisection T can be described by †D†0 #†00, Hi DH 0i \H

00
i , and Zi DZ0i \Z

00
i . Note that

T is independent of the choice of points made above.

Remark 7.1 The connected sum operation, as described, is a very simple example of a gluing of
trisections, as described in detail in Section 6. Each of T " n �.x"/ is automatically a trisection with one
new boundary component diffeomorphic to S3. If D" is a shadow diagram for T ", then D" n �.x"/ is
a diagram for T " n �.x"/ after a simple modification is made in the case that @X ¤ ∅: in this case, a
curve ı must be added to each of the ˛i that is parallel to the curve @�.x"/ where †0 and †00 were glued
together (this is a separating reducing curve in the sense of Definition 7.6, below).

There is a complication in extending this interpretation to connected sum of bridge trisections with
boundary that was not present in discussions of the connected sum of closed bridge trisections elsewhere
in the literature. The naïve idea is to simply choose the connected sum points x" to be bridge points. This
works for closed bridge trisections, because every bridge point is incident to a flat strand in each of the
three trivial tangles. This is not the case for bridge trisections with boundary. To convince oneself of the
problem, try to form the connect sum of two bridge trisections, each of which is a copy of the bridge
trisection described in Figure 31, top left, which corresponds to the standard positive Möbius band. It is
simply not possible: the removal of an open neighborhood around any bridge point has the effect that one
of the trivial tangles will no longer be trivial, since it will have a strand with no endpoints on †.

One might think that perturbing the bridge trisection (see Section 9.2) would fix the problem by creating a
bridge point that is incident to flat strands in each arm; however, the problem persists due to consideration
of the vertical patches. Since vertical patches are only allowed to be incident to one component of @X ,
we cannot puncture our bridge trisection at a bridge point that is incident to a vertical patch.

The next lemma makes precise when puncturing a bridge trisection at a bridge point produces a new
bridge trisection and indicates how to form the connected sum of bridge trisections.

Lemma 7.2 Let T be a bridge trisection for a pair .X;F/, and let x be a bridge point. Then T n �.x/ is
a bridge trisection for the pair .X n �.x/;F n �.x// if and only if x is incident to a flat patch of Di for
each i 2 Z3.

If DD .†; ˛1; ˛2; ˛3;T
�
1;T

�
2;T

�
3;x/ is a shadow diagram for T , then a shadow diagram for T n �.x/

can be obtained as follows: Let ı D @�.x/ in D. For each arc ��i of T�i that is incident to x, choose a
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ı
x

Figure 27: Left: a shadow diagram for a bridge trisection of .B4;D2/. Right: the diagram
obtained by puncturing at the bridge point x.

neighborhood �.��i /� �.x/ and let ıi D @�.��i /. Let †0 D† n �.x/, ˛0i D ˛i [ ıi , .T
�
i /
0 DT�i n �

�
i , and

x0 D x n fxg. Then there are two cases: If @X D∅, then

DD .†0; ˛1; ˛2; ˛3; .T
�
1/
0; .T�2/

0; .T�3/
0;x0/

is a shadow diagram for T n �.x/. If @X ¤∅, then

DD .†0; ˛01; ˛
0
2; ˛
0
3; .T

�
1/
0; .T�2/

0; .T�3/
0;x0/

is a shadow diagram for T n �.x/.

Proof If x is incident to a flat patch of Di for each i 2 Z3, then it is straightforward to verify that the
pieces of T n �.x/ form a bridge trisection. The main substantive changes are that

(1) the number of components of @X , @†, and @�Hi all increase by one; and

(2) for each i 2 Z3, the flat strand of Ti becomes a vertical strand and the flat patch of Di incident to
x becomes a vertical patch.

Conversely, if x is incident to a vertical patch D � Di for some i 2 Z3, then Di n �.x/ is no longer a
trivial disk-tangle, since D n �.x/ is neither vertical nor flat, as it intersects multiple components of @X .

If @X D∅, then the Hi are handlebodies and the H 0i are compression bodies with @�H 0i ŠD
2. In this

case, the curves ˛i still encode H 0i without modification. If @X ¤ ∅, then @�H 0i Š @�Hi tD
2. In

this case, ı must be added to ˛i in order to encode the fact that the new component of @�H 0i is disjoint
from the original ones. As curves in a defining set, ı and ıi serve the same role, since they are isotopic.
The only reason for pushing ı off ��i is to satisfy our convention that the shadow arcs be disjoint from
the defining set of curves for the handlebody. The shadow arcs ��i are deleted regardless of whether
@X is empty, since these shadows correspond to flat strands that become vertical strands upon removal
of �.x/.

Example 7.3 Consider the shadow diagram D shown in Figure 27, left, which corresponds to a bridge
trisection of the trivial disk in the four-ball. Figure 27, right, shows the diagram corresponding to the
bridge trisection T 0DT n�.x/ for .X 0;F0/D .B4n�.x/;D2n�.x//. Note that this diagram is equivalent
to that of Figures 25, top left, and 26, top left.

In light of this lemma, it is clear that we can obtain a bridge trisection for the connected sum of surfaces
by choosing the connected sum points to be bridge points incident only to flat patches. Though such
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bridge points need not always exist (see the Möbius band example reference above), they can be created
via interior perturbation — at most one in each direction. The punctured trisections T " n �.x"/ can be
canonically glued along the novel boundary components (which are three-sphere-unknot pairs), according
to the techniques of Section 6. Note that in the case that at least one of X 0 and X 00 have boundary, then at
least one of the curves ı0i or the curves ı00i should be discarded upon gluing, as dictated by Propositions 6.1
and 6.3. Compare Example 7.3 to Example 6.5.

So far, we have viewed the connected sum of bridge trisections as a special case of gluing bridge trisections,
and it has been noted that, for this approach to work, we must form the connected sum at bridge points
that are incident to flat patches in each disk-tangle. However, it is possible to work in a slightly more
general way so that the punctured objects need not be bridge trisections themselves, but their union will
be a bridge trisection of the connected sum.

Lemma 7.4 Let T 0 and T 00 be bridge trisections for pairs .X 0;F0/ and .X 00;F00/, respectively , and let
x0 and x00 be bridge points such that , for each i 2 Z3, one of x0 or x00 is incident to a flat patch in T ".
Then the result

T D .T 0 n �.x0//[ .T 00 n �.x00//

obtained by removing open neighborhoods of the x" from the T " and gluing along resulting boundaries so
that the corresponding trisection pieces are matched is a bridge trisection for .X;F/D .X 0;F0/#.X 00;F00/.

Proof LetD"i be the patch of D"i containing x" for each i 2Z3 and each "2f0;00 g. LetDiDD0i[@�.x"/D
00
i .

Then
Di D D0i [@�.y"/ D00i D .D

0
i nD

0
i /t .D

00
i nD

00
i /tDi :

For each i 2 Z3, one of the D"i will be flat, so Di will be flat or vertical, according to whether the other
of the D"i is flat or vertical. In any event, each disk of Di has at most one critical point, and we have a
trivial disk-tangle, since the boundary sum of trivial disk-tangles is a trivial disk-tangle.

A similar argument shows that the arms of T are just the boundary sum of the arms of the T " and that
each strand is vertical or flat, as desired. The details are straightforward to check.

Note that while the parameters g and k are additive under connected sum, the parameters b and c are
.�1/–subadditive (eg b D b0 C b00 � 1). In the case that the .X";F"/ have nonempty boundary, the
boundary parameters p, f , v, and n are all additive, since we are discussing connected sum at an interior
point of the pairs. Unlike the case of the connected sum of two four-manifold trisections, here, the
resulting bridge trisection is highly dependent on the choice of bridge points made above.

7.2 Boundary connected sum of bridge trisections

Now consider the operation of boundary connected sum of four-manifolds. We start with the set-up
as above, but now we choose the summation points to be points y" lying in components K" of the
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bindings @†" for each " 2 f0;00 g. In this case, the pieces of the trisection T D T 0 \T 00 can be described
as †D†0 \†00, Hi DH 0i \H

00
i , Zi DZ0i \Z

00
i , B D B 0 #B 00, Pi D P 0i \ P

00
i , and Yi D Y 0i \ Y

00
i . And in

this case, g, k, and p are additive, while f and n are .�1/–subadditive, and T is highly dependent on
the choice of binding component K" made above.

The situation becomes more complicated when we consider the boundary connected sum of bridge
trisected pairs. The issue here is that F"\@†" D∅, so we cannot choose the y" to lie simultaneously on
†" and on F". Our approach is to first perform the boundary connected sum of the ambient four-manifolds,
as just described, then consider the induced bridge trisection of the split union .X;F0 tF00/ of surface
links. We now describe a modification of this bridge trisection that will produce a bridge trisection of
.X;F0 \F00/.

Suppose that we would like to form the boundary connected sum of .X 0;F0/ with .X 00;F00/ at points
y" 2 @F". Without loss of generality, we can assume that y" 2 F" \P "i ; in relation to the open-book
structure on (the chosen component of) @X", we assume that y" lies on the page P "i . Henceforth, our
model is dependent on the choice of i 2 Z3.

Choose arcs !" connecting the points y" to the chosen binding components K" � B". Let z" denote the
points of !"\K". Form the boundary connected sum of the ambient four-manifolds at the points z", as
described above, so that F0tF00 is in bridge position with respect to T . Note that the arcs !" give rise to
an arc ! in the page of Pi connecting the points y".

Use the height function on Hi to flow ! down to the core †. Let Q represent the square traced out by
this isotopy, and let !� DQ\†. Let N be a regular neighborhood of Q in X . We will change F0 tF00

to F0 \F00 in a way that will produce a bridge trisection for the latter from the bridge trisection of the
former, and this change will be supported inside N . See Figure 28, top left, for a (faithful) schematic of
this set-up. The figures depict the case of i D 1.

Proposition 7.5 A bridge trisection for .X;F/ D .X 0 \ X 00;F0 \F00/ can be obtained from the bridge
trisection of .X;F0tF00/ described above by replacing the local neighborhoodN of Q shown in Figure 28,
top left , with the local neighborhood N 0 shown in Figure 28, top right. The replacement can be seen in
a shadow diagram as the local replacement of the portion of the diagram supported near !� shown in
Figure 28, bottom left , with the portion shown in Figure 28, bottom right.

Proof Near !�, the neighborhood N is precisely the .0I 0; 2/–bridge trisection of two copies of the
trivial disk in B4. To recover all of N , we extend upward along Q. Because ! was lowered to † along a
pair of vertical strands of .Hi ;T0i tT00i /, we see that the entirety of N is still just the 2–bridge trisection
of two copies of the trivial disk. In other words, N is isolating, in a bridge-trisected way, a small disk
from each of the F".

Now, to perform the (ambient) boundary connected sum of the F" at the points y", we must attach a
half-twisted band b connecting these points. (It should be half-twisted because @F0 and @F00 are braided
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!

Q

!�

The neighborhood N . The neighborhood N 0.

!�

Local shadow diagram before. . . . . . and after boundary connected sum.

Figure 28: The trisected local neighborhood in the top left is exchanged for the trisected local
neighborhood in the top right to carry out an ambient boundary connected sum of surface-links.
The local change is depicted with shadow diagrams in the change from the bottom left to the
bottom right. Note that, globally, the pink shadow arcs necessarily correspond to vertical strands
of T1, while the light blue and light green shadow arcs may correspond (globally) to either flat or
vertical strands.

about B; the half-twist will ensure that the result @F0 # @F00 is still braided about B .) We also assume
that the core of b lies in Pi . The change affected by attaching the half-twisted band is localized to the
neighborhood N . Therefore, it suffices to understand how N is changed.

Although we are describing an ambient boundary connected sum of surfaces in a four-manifold X that
may be highly nontrivial, the neighborhoodN is a four-ball, so it makes sense to import the bridge-braided
band presentation technology from Section 3. Figure 29, left, shows a bridge-braided ribbon presentation
for N , together with the half-twisted band b. Figure 29, middle, shows the effect of attaching the band,
together with the dual band; this is a ribbon presentation for the boundary connected sum of the two
disks in N . Figure 29, right, shows a bridge-braided ribbon presentation for this object, which we denote
by N 0. Note that the boundaries of N and N 0 are both 2–braids and are identical, except where they
differ by a half-twist. As stated before, we assume this difference is supported near Pi . (Note that in
the schematic of Figure 28, top right, the half-twist is shown in the spread Yi�1, rather than in P i , due
the reduction in dimension. Similarly, in the frames of Figure 29, left and middle, the band b and the
crossing are similarly illustrated away from Pi .)
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Figure 29: Left: a ribbon presentation for N , together with the band b realizing the boundary
connected sum. Middle: a ribbon presentation for N 0, the result of the boundary connected sum.
Right: a bridge-braided ribbon presentation for N 0.

The neighborhood N 0 is the .1I 0; 2/–bridge trisection of the spanning disk for the unknot that induces the
braiding of the unknot as a .2; 1/–curve in the complement of the (unknotted) binding. The corresponding
bridge-braided ribbon presentation has one band, which is a helper band in the sense of Remarks 3.6
and 3.10. This helper band is the dual band to b.

Because @N and @N 0 are identical away from a neighborhood of !, we can cut N out and glue in N 0 to
realize the attaching of b; ie to realize the ambient boundary connected sum.

7.3 Notions of reducibility

We now discuss three notions of reducibility for trisections of pairs that we will show correspond with the
connected sum and boundary connected sum operations discussed above. These properties are distinct
from, but related to, the properties of being stabilized or perturbed, which are discussed in Section 9.

Definition 7.6 Let T be a bridge trisection for a pair .X;F/. Let ı �† n �.x/ be an essential simple
closed curve.

(1) The curve ı is called a reducing curve if, for each i 2 Z3, there exists a disk Ei � Hi n �.Ti /
with @Ei D ı.

(2) The curve ı is called a decomposing curve if, for each i 2 Z3, there exists a disk Ei � Hi
with @Ei D ı and with jEi \Ti j D 1. A decomposing curve is called trivial if it bounds a disk in
† containing a single bridge point.

(3) An embedded three-sphere S � X is a trisected reducing sphere if Zi \ S is a three-ball and
Hi \S is a disk for each i 2 Z3, and †\S is a reducing curve.

(4) An embedded three-sphere-unknot pair .S;K/� .X;F/ is a (nontrivial) trisected decomposing
sphere pair if

.Zi \S;Di \S/Š .B
3; I /
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is a trivial 1–strand tangle in a three-ball for each i 2 Z3, and †\S is a (nontrivial) decomposing
curve.

(5) A trisection is reducible (resp. decomposable) if it admits a reducing curve (resp. a nontrivial
decomposing curve).

Let ��† n �.x/ be an essential, neatly embedded arc.

(6) The arc � is called a reducing arc if, for each i 2 Z3, there exists a neatly embedded arc �i � Pi
and a disk Ei �Hi n �.Ti / with @Ei D �[ �i .

(7) A neatly embedded three-ball B �X nF is a trisected boundary-reducing ball if, for all i 2 Z3,
Zi \B is a three-ball and Hi \B is a disk, and †\B is a reducing arc.

(8) A trisection is boundary-reducible if it admits a reducing arc.

Lemma 7.7 If a trisection T is reducible , decomposable , or boundary-reducible , then T admits ,
respectively, a trisected reducing sphere , a nontrivial trisected decomposing sphere pair , or a trisected
boundary-reducing ball.

Proof What follows is closely based on the proof of Proposition 3.5 from [26], where reducing curves
are assumed (implicitly) to be separating, and some clarification is lacking. Here, we give added detail
and address the latter two conditions, which are novel.

Suppose T is either reducible or decomposable, with reducing or decomposing curve ı bounding disks
Ei in the Hi . Let Ri DEi [ı EiC1 be the given two-sphere in Hi [†HiC1 � @Zi . Recall (Section 2.7)
that Zi is built by attaching 4–dimensional 1–handles the lensed product Yi � Œ0; 1� along Yi � f1g. A
priori, the Ri may not be disjoint from the belt spheres of the 1–handles in Zi ; however, by [22], it can be
arranged via handleslides and isotopies of the 1–handles that Ri is disjoint from the belt spheres. Thus,
we can assume that either (1) Ri is parallel to a belt sphere, or (2) Ri is contained in Yi �f1g. These cases
correspond to whether ı is nonseparating or separating, respectively. In case (1), Ri bounds the cocore of
the 1–handle, which is a three-ball in Zi . In case (2), since Yi is irreducible, Ri bounds a three-ball in Yi
whose interior can be perturbed into Zi . In either case, we get a three-ball Bi in Zi whose boundary is
Ei [ı EiC1, and the union Sı D B1[B2[B3 gives a trisected three-sphere.

In the case that ı is reducing, we are done: Sı is a trisected reducing sphere. In the case that ı is a
decomposing curve, it remains to show that Sı \F is unknotted and Bi \F is a trivial arc; the former
is implied by the latter, which we now show. Note that Bi and Di are both neatly embedded in Zi and
that Di is boundary parallel. Using the boundary parallelism of Di , we can arrange that a component
D of Di intersects Bi if and only if D intersects Ri D @Bi . It follows that there is a unique component
D �Di that intersects Bi . If we isotope D to a disk D� � @Zi , then we find that D�\Ri consists of an
arc and some number of simple close curves. By an innermost curve argument, we may surgery D� to
obtain a new disk D0� such that D0� \Ri consists solely of an embedded arc. Since D0� and D� have
the same boundary, they are isotopic rel-@ in Zi by Proposition 2.13. Reversing this ambient isotopy,
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we can arrange that Bi \DD Bi \D consists of a single arc. Moreover, this arc is trivial, since it is
isotopic to the arc Ri \D� in @Zi , and Ri is a decomposing sphere for either the unknot @D or the
unknotted, vertical strand D\Hi [†HiC1. Either way, Ri cuts off an unknotted arc. Thus, .Sı ; K/ can
be constructed to be a decomposing sphere for the trisection, as desired, where K is the three-fold union
of the trivial arcs Bi \F.

Now suppose that T is boundary-reducible, with reducing arc � and arcs �i such that �[�i bounds a disk
Ei �Hi . Consider the neatly embedded 2–disk Ri DEi [� EiC1 in Hi [†HiC1 � @Zi . Let Bi be the
trace of a small isotopy that perturbs the interior of Ri into Zi . Then the union B� D B1[B2[B3 is a
trisected three-ball. If � is a reducing arc, we are done.

Remark 7.8 (regarding nonseparating curves) Reducing curves are almost always separating in the
following sense. Suppose that ı is a nonseparating reducing curve. Then there is a curve ��† that is
dual to ı. Let ı0 D @�.ı[�/. Then ı0 is a separating reducing curve, unless it is inessential (ie parallel to
a boundary component of † or null-homotopic in †). This only occurs if † is the core of the genus one
trisection for S1 �S3 or for its puncture, .S1 �S3/ı. In any event, the neighborhood �.Sı [ �/, where
Sı is the reducing sphere corresponding to ı as in Lemma 7.7, is diffeomorphic to .S1 �S3/ı.

If ı is a nonseparating decomposing curve with corresponding decomposing pair .Sı ; Kı/, then Kı can
be separating or nonseparating as a curve in F. If Kı is nonseparating, then we can surger .X;F/ along
the pair .S;K/ to obtain a new pair .X 0;F0/. That the surgery of F along K can be performed ambiently
uses the fact that K is an unknot in S , hence bounds a disk in X nF. Working backwards, there is an
S0 � F0 �X along which we can surger .X 0;F0/ to obtain .X;F/. It follows that X DX 0 # .S1 �S3/
and F is obtained from F0 by tubing. Diagrammatically, the surgery from .X;F/ to .X 0;F0/ is realized
by surgering † along ı. Note that this tubing is not necessarily trivial in the sense that it may or may not
be true that .X;F/D .X 0;F0/ # .S1 �S3; S1 �S1/.

A bridge trisection satisfying one of the three notions of reducibility decomposes in a natural way. See
Section 7.1 for a detailed discussion of connected sum and boundary connected sum operations. For
example, presently, we let T 0 # T 00 denote the connected sum of trisections, regardless of whether the
connected summing point is a bridge point or not.

Proposition 7.9 Let T be a bridge trisection for a pair .X;F/.

(1) If T admits a separating reducing curve , then there exist pairs .X 0;F0/ and .X 00;F00/ with trisec-
tions T 0 and T 00 such that T D T 0 # T 00 and

.X;F/D .X 0 #X 00;F0 tF00/:

(2) If T admits a nontrivial , separating decomposing curve , then there exist pairs .X 0;F0/ and
.X 00;F00/ with trisections T 0 and T 00 such that T D T 0 # T 00 and

.X;F/D .X 0 #X 00;F0 # F00/:
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(3) If T admits a separating reducing arc , then there exist pairs .X 0;F0/ and .X 00;F00/ with trisections
T 0 and T 00 such that T D T 0 \T 00 and

.X;F/D .X 0 \X 00;F0 tF00/:

Proof If T admits a separating reducing curve ı, then it admits a separating trisected reducing sphere Sı ,
by Lemma 7.7. Cutting open along Sı and capping off the two resulting three-sphere boundary components
with genus zero trisections of B4 results in two new trisections T 0 and T 00 for pairs .X 0;F0/ and .X 00;F00/,
as desired in part (1). For part (2), we proceed as above, except we cap off with two genus zero 0–
bridge trisections of .B4;D2/ to achieve the desired result. (If any of the disks Ei bounded by ı in
the Hi intersect vertical strands �i , then we can perturb to make these intersecting strands flat. If such
perturbations are performed before cutting, they can be undone with deperturbation after gluing. This is
related to the discussion immediately preceding Lemma 7.4.)

If T admits a separating reducing arc �, then it admits a separating trisected reducing ball B�, by
Lemma 7.7. Cutting open along B� results in two new trisections T 0 and T 00 for pairs .X 0;F0/ and
.X 00;F00/, as desired in part (3).

Remark 7.10 (boundary-decomposing arcs) Conspicuously absent from the above notions of reducibil-
ity is a characterization of what might be referred to as boundary-decomposability — in other words, a
characterization of when we have

.X;F/D .X 0 \X 00;F0 \F00/:

The obvious candidate for such a notion would be the existence of a neatly embedded, essential arc ��†,
similar to the one involved in the notion of boundary-reducibility, but where the disks Ei each intersect
the respective Ti in precisely one point. However, a lengthy examination of such arcs reveals that they
rarely correspond to surfaces that are boundary connected sums in the desired way. To the point, many of
the examples given later in this section admit such arc, but are not boundary-connected sums of bridge
trisected surfaces. We have been unable to find a satisfying characterization of when this occurs.

7.4 Classification for small parameters

As a first example, consider the .4; .2; 4; 2/I 3/–bridge trisection shown in Figure 30, which is the boundary
sum of a 1–bridge trisection, a 3–bridge trisection that is perturbed, and three 0–bridge trisections and
corresponds to .B4; S2tS2tD2tD2tD2/. (The perturbation is a finger perturbation; see Definition 9.9.)
It turns out that such a bridge trisection is obtained whenever ci D b for some i 2 Z3. (Recall that @Di
contains a flat b–bridge ci component unlink, so b � ci for all i 2 Z3.)

Proposition 7.11 Let T be a .b; cI v/–bridge trisection for a surface .B4;F/. If b D ci for some i 2Z3,
then ciC1 D ciC2 D c and

.B4;F/D

�
B4;

�G
c

S2
�
t

�G
v

D2
��
;
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Figure 30: A shadow diagram, left, and schematic tri-plane diagram, right, for the unique
.4; .2; 4; 2/I 3/–bridge trisection, which is totally reducible.

and T is the boundary sum of c genus zero bridge trisections of .B4; S2/, each of which is a finger
perturbation of the 1–bridge trisection , and v genus zero 0–bridge trisections of .B4;D2/.

Proof Suppose without loss of generality that c2 D b. By Proposition 3.14, F admits a .b; cI v/–bridge-
braided band presentation. In particular, F can be built with nD b�c2D 0 bands. It follows that c1D c3.
It also follows that the flat disks of .Z2;D2/ are given as products on the b flat strands of .H2;T2/.

We can assume that the union of the red and blue shadow arcs is a collection of c1 embedded polygons
in †, since they determine a b–bridge c1–component unlink in H1[†H2. We can also assume that the
green shadow arcs coincide with the blue shadow arcs, due to the product structure on the flat disks of D2.
See Figure 30, left.

Let ı be a simple closed curve in † n �.x/ that separates the red/blue polygons from the bridge points
that are adjacent to no shadow arc. (Note that, here, every bridge point is adjacent to either 0 or 3 shadow
arcs by the above considerations.) Then ı is a reducing curve for T such that T D T1 # T2, where T1 is
a .b; c/–bridge trisection for a pair .S4;F1/ and T2 is a .0; 0I v/–bridge trisection for a pair .B4;F2/.

Because the blue and green shadow arcs coincide, each polygon is a finger perturbation of the 1–bridge
splitting of .S4; S2/, and F1 D

F
c S

2. Moreover, T1 admits c � 1 reducing curves that completely
separate the polygons. It follows that T1 is connected sum of perturbations of the 1–bridge trisection
of .S4; S2/, as desired. Finally, the bridge trisection T2 admits v� 1 reducing arcs that cut it up into v
copies of the genus zero 0–bridge trisection of .B4;D2/, as desired.

Having dispensed of the case when ci D b for some i 2 Z3, we consider the case when b D 1 and, in
light of the above, ci D 0 for all i 2 Z3. Two simple examples of such bridge trisections are given in
Figure 31.

For a more interesting family of examples, consider the .2; 4/–torus link T2;4, which bounds the union
of the trivial Möbius band M 2 and the trivial disk D2. (Imagine Figure 32, left, with the three parallel
circles replaced with a single circle.) Now, consider the surface Fv obtained by replacing the D2 with
v� 1 parallel, trivial disks; Figure 32, left, shows the case of v D 4. A .1; 0I v/–bridge trisection Tv for
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Figure 31: Top: the .1; 0I 1/–bridge trisection corresponding to the standard (positive) Möbius
band .B4;M 2/. Bottom: the .1; 0I 2/–bridge trisection corresponding to the unknotted disk
.B4;D2/ with (positive) Markov stabilized, unknotted boundary.

.B4;Fv/ is shown in Figure 32, right. Note that when vD 1, Tv corresponds the trivial (positive) Möbius
band with unknotted boundary and was given diagrammatically in Figures 31, top left and bottom left.

One can check using the techniques of Section 4.1 that the bridge trisection Tv induces the v–braiding
of @Fv given in Artin generators by

.�1�2 � � � �v�2�
2
v�1�v�2 � � � �2�1/

2:

In other words, one strand wraps twice around the other v� 1 strands. The link @Fv can be thought of as
taking the .v�1; 0/–cable of one component of T2;4.

Proposition 7.12 The bridge trisection Tv is the unique (up to mirroring) irreducible .1; 0I v/–bridge
trisection.

Proof Suppose that T is an irreducible .1; 0I v/–bridge trisection, and consider a shadow diagram for T .
Since b D 1, there is a unique shadow arc of each of color. Since c D 0, the union of any two of these

Figure 32: Left: a ribbon presentation for a nontrivial linking of a Möbius band with trivial disks
in B4. Such surfaces admit 1–bridge trisections, diagrams for which are shown to the right.
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shadow arcs is a connected, embedded, polygonal arc in †, by Proposition 5.2 (no slides are possible,
only isotopies). There are two cases: either the union of the three shadow arcs is a circle, or the union of
the three shadow arcs is a Y–shaped tree.

Suppose the union is a Y–shaped tree. Let � be an arc connecting the tree to @†, and let ! be the arc
boundary of a neighborhood of the union of � and the tree. In other words, ! is a neatly embedded arc in
† n �.x/ that separates the tree from the rest of the diagram. If the rest of the diagram is nonempty, then
ı is a reducing arc for the bridge trisection, and we have T D T1 \T2, where T1 is a .1; 0I 2/–bridge
trisection (with Y–shaped shadow diagram) and T2 is a .0; 0I v/–bridge trisection, with v > 0. This
contradicts the assumption that T was irreducible. If v D 0 (ie the rest of the diagram is empty), then
T D T1 is the Markov perturbation of the genus zero 0–bridge trisection and is shown in Figure 31,
bottom right, so T is reducible, another contradiction.

Now suppose that the union of the three shadow arcs is a circle, and let D �† denote the disk the union
bounds. Suppose there is a bridge point in †nD. Then there is a reducing arc separating the bridge point
from D, so T is boundary reducible, a contradiction. So, the v�1 bridge points that are not adjacent to a
shadow arc are contained in D. Therefore, the shadow diagram is the one given in Figure 32, bottom
right, or, in the case that v D 1, in Figure 31, bottom left.

Having walked through these modest classification results, we now present some families of examples, as
well as some questions and conjectures about further classification results.

Example 7.13 Consider the three .2; 0I 1/–bridge trisections shown in Figure 33, which correspond
to the punctured torus and two different Klein bottles. All three surfaces are isotopic into S3 and are
bounded by the unknot. The two Klein bottles decompose as boundary connected sums of Möbius bands
bounded by the unknot in S3. The Klein bottle depicted in Figure 33, middle, is the boundary connected
sum of two positive Möbius bands; and the Klein bottle depicted in Figure 33, bottom, is the boundary
connected sum of a positive and a negative Möbius bands

These three bridge trisections can be obtained by taking the three unique .3; 1/–bridge trisections [27,
Section 4.5] of closed surfaces in S4 and puncturing at a bridge point.

Conjecture 7.14 There are exactly three (up to mirroring) irreducible .2; 0I 1/–bridge trisections.

Example 7.15 Consider the .2; 0I 2/–bridge trisection shown in Figure 34, left, which corresponds the
annulus S3 bounded by the .2; 4/–torus link. Compare with Example 3.16 and Figure 14(a). Replacing
the three positive half-twists with n half-twists for some n 2 Z gives a surface in S3 bounded by the
.2; n/–torus link that is a Möbius band if n is odd and an annulus if n is even.

One interesting aspect of the case when n is even relates to the orientation of the boundary link. The
boundary link, which is the .2; n/–torus link, inherits an orientation as a 2–braid. It also inherits an
orientation from the spanning annulus that the bridge trisection describes. These orientations don’t agree!
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Figure 33: Three .2; 0I 1/–bridge trisections for surfaces bounded by the unknot and isotopic
in S3. The top row describes a punctured torus; the middle row describes the boundary connected
sum of two positive Möbius bands; and the bottom row describes the boundary connected sum of
a positive and a negative Möbius band.

In other words, the bridge trisections of the spanning annuli for these links induce a braiding of the
links, but this braiding is not coherent with respect to the orientation of the links induced by the annuli.
Compare with Example 7.17 below.

Conjecture 7.16 Every .2; 0I 2/–bridge trisection is diffeomorphic to one described in Example 7.15
and in Figure 34.

Example 7.17 Figure 35, left, gives a .3; 0I 3/–bridge trisection for the annulus in S3 bounded by the
.2; 4/–torus link. In contrast to the bridge trisection for this surface discussed in Example 7.15 and
illustrated in Figure 34, this bridge trisection induces a coherent 3–braiding of the boundary link. This
example could be generalized to give an .nC1; 0InC1/–bridge trisection for the annulus bounded by the
.2; n/–torus link for any even n 2 Z.

Figure 34: Diagrams for a .2; 0I 2/–bridge trisection of the planar surface bounded by the .2; n/–
torus link in S3; shown is nD 4.
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Figure 35: Diagrams for a .3; 0I 3/–bridge trisection of the planar surface bounded by the .2; n/–
torus link in S3; shown is nD 4.

8 Proof of Theorem 8.1

We now make use of the general framework outlined in Section 2 to give a proof of Theorem 8.1, which
we restate for convenience. We adopt the notation and conventions of Definition 2.18.

Theorem 8.1 Let T be a trisection of a four-manifold X with @X D Y , and let .B; �/ denote the
open-book decomposition of Y induced by T . Let F be a neatly embedded surface in X ; let LD @F; and
fix a braiding Ǒ of L about .B; �/. Then F can be isotoped to be in bridge trisected position with respect
to T such that @FD Ǒ. If L already coincides with the braiding ˇ, then this isotopy can be assumed to
restrict to the identity on Y .

Note that if X is closed, then Theorem 8.1 is equivalent to [28, Theorem 1]. For this reason, we assume
henceforth that Y D @X ¤∅. We will prove Theorem 8.1 using a sequence of lemmata. Throughout, we
will disregard orientations. All isotopies are assumed to be smooth and ambient. First, we describe the
existence of a Morse function ˆT on (most of) X that is well-adapted to the trisection T . We will want
to think of X as a lensed cobordism from Y1 to Y2[P3 Y3.

Lemma 8.2 There is a self-indexing Morse function

ˆT WX n �.P1[B P2[B P3/! Œ0; 4�

such that

(1) ˆT has no critical points of index zero or four;

(2) Y1 n �.P1[B P2/Dˆ
�1
T .0/;

(3) .H1[†H2/ n �.P1[B P2/Dˆ
�1
T .1:5/;

(4) ˆT .H3 n �.P3//� Œ1:5; 2:5/;

(5) Y3 n �.P3[B P1/Dˆ
�1
T .4/; and

(6) the index j critical points of ˆT are contained in Int.Zj /.

Note that if ˆT .x/� 2:5, then x 2Z3.

Proof The existence of the Morse function and property (1) are standard consequences of the cobordism
structure. The other properties are easy and commonly discussed within the theory of trisections; see [10],
for example. The set-up is made evident by the schematics of Figure 36.
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Figure 36: Passing from a trisection to a natural Morse function on X n �.P1[P2[P3/.

Now, Z1 is the result of attaching four-dimensional 1–handles to the lensed product Y1 � I . The core †
can be assumed to satisfyˆT .†n�.B//D 1:5, and, together with P1 and P2, it gives a standard Heegaard
double decomposition of @Z1. The attaching circles of the four-dimensional 2–handles are assumed to be
contained in a (1–complex) spine of the compression body H2, with the result of Dehn surgery thereupon
beingH3. The trace of this 2–handle attachment isZ2, andZ3 is the (lensed cobordism) trace of attaching
four-dimensional 3–handles to H3[†H1, the result of which is Y3. (Note that Z2 is not quite a lensed
cobordism from this perspective, since Y2 is a vertical portion of its boundary @Z2 DH2[Y2[H3.)

For the remainder of the section, we let ˆ D ˆT . Let ˆi D ˆjZi for i D 1; 2; 3. Recall the standard
Morse function on Zi ŠZg;ki ;p;f that was discussed in Section 2.7. By the above discussion, we have
the following consequence of Lemma 8.2:

Corollary 8.3 If i D 1 or i D 3, then ˆi is a standard Morse function on Zi ŠZg;ki ;p;f .

Presently, we will begin to isotope F to lie in bridge trisected position with respect to T .

Lemma 8.4 After an isotopy of F that is supported near @X , we can assume that LD Ǒ.

Proof By the Alexander theorem [1] or the generalization due to Rudolph [31], L can be braided with
respect to the open-book decomposition .B; �/. By the Markov theorem [25] or its generalization to
closed 3–manifolds [32; 33], any two braidings of L with respect to .B; �/ are isotopic. Thus, by an
isotopy of F that is supported near Y , we can assume that L is given by the braiding to Ǒ.

Any modifications made to F henceforth will be isotopies that restrict to the identity on Y . Let ˆF denote
the restriction of ˆ to F. (Note that by choosing a small enough collar �.Y / in X , we can assume that
F\ �.Y /D L� I . By a small isotopy of F rel-@, we can assume that ˆF is Morse.)
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Lemma 8.5 After an isotopy of F rel-@, we can assume that ˆF W F!R is Morse and that

(1) the minima of ˆF occur in Z1,

(2) the saddles of ˆF occur in ˆ�1.1:5/, and

(3) the maxima of ˆF occur in Z3.

Proof That the critical points can be rearranged as desired follows from an analysis of their various
ascending and descending manifolds. A detailed analysis of this facet of (embedded) Morse theory can
be found in [3]. Here, we simply make note of the key points.

The ascending (unstable) membrane of a maximum of ˆF is one-dimensional; think of a vertical arc
emanating from the maximum and terminating in Y3. (Vertical means the intersection with each level set
is either a point or empty.) Generically, such an arc will be disjoint from F and will be disjoint from
the descending spheres of the critical points of ˆ (which have index one, two, or three) in each level
set. Thus, the gradient flow of ˆ can be used to push the maxima up (and the minima down), and we
obtain that the minima lie below ˆ�1.1:5/ (ie in Z1) and that the maxima lie above ˆ�1.2:5/ (ie in Z3).
Having arranged the extrema in this way, we move on to consider the saddles.

The ascending membranes of the saddles of ˆF are two-dimensional, while the descending spheres of the
index one critical points of ˆ are zero-dimensional. Thus, we can flow the saddles up past the index one
critical points of ˆ, until they lie in ˆ�1.1:5/. Symmetrically, we can flow saddles down past the index
three critical points of ˆ to the same result.

Let Di D F\Zi for i D 1; 2; 3. Assume that Ǒ is a braiding of L of multiindex v.

Lemma 8.6 If ˆF has c1 minima and c3 maxima , then D1 is a .c1; v/–disk-tangle , and D3 is a .c3; v/–
disk-tangle.

Proof By Corollary 8.3, ˆ1 is a standard Morse function on Zi . By Lemma 2.14, since .ˆ1/jD1 has c1
minima and no other critical points, and since F\Y1 D Ǒ \Y1 is a v–thread, this implies that D1 is a
.c; v/–disk-tangle. The corresponding result holds for D3, after turning ˆ3 and .Z3;D3/ upside down.

Next, we see that the trisection T can be isotoped to ensure the intersections Ti D F\Hi are trivial
tangles for i D 1; 2; 3.

Lemma 8.7 After an isotopy of T , we can assume that each Ti is a .b; v/–tangle for some b � 0.

Proof The level setˆ�1.1:5/ is simplyM D .H1[†H2/n�.P1[BP2/. The intersection F\ˆ�1.1:5/

is a 2–complex L[ b, where L is a neatly embedded one-manifold L, and b is a collection of bands.
Here, we are employing the standard trick of flattening F near each of the saddle points of ˆF. (See
Section 3.2 for a precise definition of a band.)

We have a Heegaard splitting .†IH1;H2/ that induces a Morse function ‰ W ˆ�1.1:5/! R. In what
follows, we will perturb this splitting (ie homotope this Morse function) to improve the arrangement of
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the 2–complex L[b. First, we perturb † so that it becomes a bridge surface for L. At this point, we have
arranged that T1 and T2 are .b0; v/–tangles, for some value b0 that will likely be increased by what follows.

Next, we can perturb † until the bands b can be isotoped along the gradient flow of ‰ so that their cores
lie in †. We can further perturb † until b\† consists solely of the cores of b, which are embedded in †;
said differently, the bands of b are determined by their cores in †, together with the surface-framing given
by the normal direction to † in ‰�1.1:5/. Finally, we can further perturb † until each band is dualized
by a bridge semidisk for T2. The details behind this approach were given in the proof of Theorem 1.3
(using Figures 10–12) of [27] and discussed in [28].

Finally, we isotope † so that b is contained in H2; in other words, we push the bands slightly into H2
so as to be disjoint from †. Since each band of b is dualized by a bridge semidisk for T2, the result
T3 D .T2/b of resolving T2 using the bands of b is a new trivial tangle. The proof of this claim is
explained in detail in [27, Lemma 3.1 and Figure 8]. (Though it is not necessary, we can even perturb
† so that b is dualized by a bridge disk at both of its endpoints, as in the aforementioned [27, Figure 8].)

Note that all of the perturbations of † were supported away from �.P1 [B P2/, so each of the Ti

contained precisely v vertical strands throughout. In the end, each is a .b; v/–tangle for some b � 0.

Finally, we verify that D2 is a trivial disk-tangle in Z2.

Lemma 8.8 If c2 D b� jbj, then D2 is a .c2; v/–disk-tangle.

Proof As in the preceding lemma, this follows exactly along the lines of [27, Lemma 3.1], with only
slight modification to account for the vertical strands. This is particularly easy to see if one assumes that
b meets dualizing disks at each of its endpoints, as in [27, Figure 8].

Thus, we arrive at a proof of Theorem 8.1.

Proof of Theorem 8.1 After performing the isotopies of F and T outlined in the lemmata above, we have
arranged that, for i D 1; 2; 3, the intersection Di D F\Zi is a .ci ; v/–disk-tangle in Zi (Lemmata 8.6
and 8.8) and the intersection Ti DF\Hi is a .b; v/–tangle (Lemma 8.7). Thus, F is in .b; cI v/–bridge
trisected position with respect to T , where c D .c1; c2; c3/, and the ordered partition v comes from the
multiindex v of the braiding Ǒ of LD @F.

9 Stabilization operations

In this section we describe various stabilization and perturbation operations that can be used to relate two
bridge trisections of a fixed four-manifold pair. We encourage the reader to refer back to the discussion
of connected sums and boundary connected sums of bridge trisections presented in Section 7.

9.1 Stabilization of four-manifold trisections

First, we’ll recall the original stabilization operation of Gay and Kirby [10], as developed in [26].
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Figure 37: The positive Hopf stabilization TC of a trisection T along an arc ! in the core of T .

Definition 9.1 (core stabilization) Let T be a .g;kIp;f /–trisection for a four-manifold X , and let !
be an arc in Int.†/. Fix an i 2 Z3. Perturb the interior of ! into HiC1 DZi \ZiC1, and let †0 denote
the surface obtained by surgering † along !. Then, †0 is the core of a .gC1;k0Ip;f /–trisection T 0

for X , where k0 D k, except that k0i D ki C 1, which is called the core i–stabilization of T .

The importance of this operation rests in the following result of Gay and Kirby.

Theorem 9.2 [10] Suppose that T and T 0 are two trisections of a fixed four-manifold X , and assume
that either @X D∅ or T and T 0 induce isotopic open-book decomposition on each connected component
of @X . Then T and T 0 become isotopic after they are each core stabilized some number of times.

Performing a core i–stabilization is equivalent to forming the (interior) connected sum with a simple
trisection of S4. Let Ti denote the genus one trisection of S4 with ki D 1. See [26] for details.

Proposition 9.3 T 0 is a core i–stabilization of T if and only if T 0 D T # Ti .

Next, we recall the stabilization operation for trisections that corresponds to altering the induced open-
book decomposition on the boundary by the plumbing of a Hopf band. Let TCHopf (resp. T�Hopf) denote the
genus one trisection of B4 that induces the open-book decomposition on S3 with binding the positive
(resp. negative) Hopf link.

Definition 9.4 (Hopf stabilization) Let T be a .g;kIp;f /–trisection for a four-manifold X . Let
! � .† n˛i / be a neatly embedded arc, which we consider in Pi . Let T˙ denote the trisection obtained
by plumbing T to T˙Hopf along the projection of !, as in Figure 37. We call T˙ the positive/negative
Hopf .i; j /–stabilization of T along !.

By a plumbing of trisections, we mean a plumbing of pages along the projection of arcs to the pages.
Diagrammatically, this is represented by plumbing the relative trisection diagrams along the corresponding
arcs in the core surface, as in Figure 37. This induces boundary connected sums at the level of the three-
dimensional and four-dimensional pieces of the trisections and plumbing at the level of the core surfaces
and pages. Hopf stabilization was first studied in the setting of trisections by Castro [4] and Castro, Gay
and Pinzón-Caicedo [6]. We rephrase their main result in the more general setting of the present article.
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Proposition 9.5 [6, Corollary 17] Let T be a .g;kIp;f /–trisection for a four-manifold X inducing
an open-book decomposition .B; �/ on @X . Then a positive (resp. negative) Hopf stabilization T˙ is a
.gC1;kIp0;f 0/–trisection of X inducing a positive (resp. negative) Hopf stabilization of .B; �/, where
f 0 is obtained from f by either increasing or decreasing the value of fj by one , and p0 is obtained from
p by either decreasing or increasing the value of pj by one , according with , in each case , whether or not
! spans distinct boundary components of P ji or not.

The upshot of this proposition is that, to the extent that open-book decompositions of three-manifolds are
related by Hopf stabilization and destabilization, any two trisections of a compact four-manifold can be
related by a sequence of Hopf stabilizations and core stabilizations. Giroux and Goodman proved that
two open-book decompositions on a fixed three-manifold have a common Hopf stabilization if and only
if the associated plane fields are homotopic [12], answering a question of Harer [14]. From this, together
with Theorem 9.2, we can state the following.

Corollary 9.6 Suppose that T and T 0 are two trisections of a fixed four-manifold X . Assume that
@X ¤∅ and that for each component of @X , the open-book decompositions induced by T and T 0 have
associated plane fields that are homotopic. Then T and T 0 become isotopic after they are each core
stabilized and Hopf stabilized some number of times.

Recently, Piergallini and Zuddas showed there is a complete set of moves (including a double-twist
move) that suffice to relate any two open-book decompositions on a given three-manifold [30]. By giving
trisection-theoretic versions of each move, Castro, Islambouli, Miller, and Tomova were able to prove a
strengthening of the original Gay–Kirby uniqueness theorem for trisected manifolds with boundary [7].

9.2 Interior perturbation of bridge trisections

Having overviewed stabilization operations for four-manifold trisections, we now discuss the analogous
operations for bridge trisections. To avoid confusion, we will refer to these analogous operations as
perturbation operations; they will generally correspond to perturbing the bridge trisected surface relative
to the core surface. Throughout, the obvious inverse operation for a perturbation will be referred to as a
deperturbation.

We begin by recalling the perturbation operation for bridge trisections first introduced in [27] and invoked
in [28]. This perturbation operation requires the existence of a flat disk in Di . To distinguish this operation
from the subsequent one, we append the adjective “Whitney”.

Definition 9.7 (Whitney perturbation) Let F be a neatly embedded surface in a four-manifold X such
that F is in .b; cI v/–bridge trisected position with respect to a trisection T of X . Let D �Di be a flat
disk, and let D� � Yi be a disk that has no critical points with respect to the standard Morse function
on Yi and that is isotopic rel-@ to D, via a three-ball B . Let � be a neatly embedded disk in B that
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Figure 38: A local picture corresponding to a finger 1–perturbation.

intersects D� in a vertical strand. Let F0 denote the surface obtained by isotoping F via a Whitney move
across �. Then F0 is in .bC1; c0I v/–bridge trisected position with respect to T , where c0 D c, except
that c0i D ci C 1. This Whitney move is called an Whitney i–perturbation.

See [28, Figures 14 and 23] for a visualization of a Whitney perturbation. The usefulness of Whitney
perturbations is made clear by the following result, which was proved in [27] in the case that T has genus
zero (so X D S4) and in [16] in the general case.

Theorem 9.8 [16; 27] Fix a four-manifold X and a trisection T of X . Let F;F0 � X be isotopic
closed surfaces , and suppose TF and TF0 are bridge trisections of F and F0 induced by T . Then there is
a sequence of interior (Whitney) perturbations and deperturbations relating TF and TF0

Even without the presence of a flat disk, there is still a perturbation operation available. Despite being
called a “finger” perturbation, the following perturbation is not an inverse to the Whitney perturbation.
The adjective “Whitney” and “finger” are simply descriptive of how the surface is isotoped relative to the
core to achieve the perturbation. However, it is true that the inverse to a Whitney perturbation (or a finger
perturbation) is a finger deperturbation.

Definition 9.9 (finger perturbation) Let F be a neatly embedded surface in a four-manifold X such that
F is in .b; cI v/–bridge trisected position with respect to a trisection T of X . Fix a bridge point x 2 x,
and let N be a small neighborhood of x, so N \F is a small disk. Let ! � @N be a trivial arc connecting
Ti to †. Perform a finger-move of F along !, isotoping a small bit of F toward and through †, as in
Figure 38. Let F0 denote the resulting surface. Then, F0 is in .bC1; c0I v/–bridge position with respect
to T , where c0 D c, except that c0i D ci C 1. This finger move is called an finger i–perturbation.

Note that the disk of the disk-tangle Di containing the bridge point x is neither required to be flat
nor vertical in the definition of a finger perturbation. However, if this disk is flat, then the operation
is the simplest form of a Whitney perturbation, corresponding to the case where the vertical strand
in D� is boundary parallel through vertical strands. The simplicity of the finger perturbation operation
is expressed by the following proposition. Let T i

S2
denote the 2–bridge trisection of the unknotted

two-sphere satisfying ci D 2.

Algebraic & Geometric Topology, Volume 24 (2024)
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Proposition 9.10 If the bridge trisection T 0F is obtained from the bridge trisection TF via a finger
i–perturbation , then T 0F D TF # T i

S2
.

The proof is an immediate consequence of how bridge trisections behave under connected sum. Note that
a Whitney perturbation corresponds to a connected sum as in the proposition if and only if it is a finger
perturbation; in general, a Whitney perturbation cannot be described as the result of a connected sum of
bridge trisections. For example, the unknotted two-sphere admits a .4; 2/–bridge trisection that is not a
connected sum of (nontrivial) bridge trisections, even though it is (Whitney) perturbed.

9.3 Markov perturbation of bridge trisections

Let TD2 denote the 0–bridge trisection of the unknotted disk D2 in B4.

Definition 9.11 (Markov perturbation) Let T 0 be a .b; cI v/–bridge trisection of a neatly embedded
surface .X 0;F0/, and let T 00 be the 0–bridge trisection of .B4;D2/. Choose points y" 2 T"i \P

"
i for

" 2 f0; 00g. Let .X;F/ D .X 0;F0/ \ .B4;D2/, and let T D T 0 \ T 00. Then T is a .bC1; cI v0/–bridge
trisection of .X;F/D .X 0;F0/, where vD v0, except that vj D .vj /0C 1, where y1 2 Lj . The bridge
trisection T 0 is called the Markov i–perturbation of T .

In justification of this definition: That T 0 is a new bridge trisection follows from Proposition 7.5. That
F0 is isotopic to F follows from the fact that we are forming the boundary connected sum with a trivial
disk. That L0 is obtained from L via a Markov perturbation follows from our understanding of a Markov
perturbation as the trivial connected sum of a braided link with a meridian of a component of the binding —
see Section 2.8. Note that the left-most blue and green arcs of Figure 39 are shown in light blue and
light green to indicate that they might correspond to flat or vertical strands. The pink arcs correspond to
vertical strands.

The importance of this operation is due to the generalized Markov theorem, which states that any two
braidings of a given link with respect to a fixed open-book decomposition can be related by an isotopy
that preserves the braided structure, except at finitely many points in time at which the braiding is changed
by a Markov stabilization or destabilization [25; 32; 33]. See Section 2.8.

Taken together, the stabilization and perturbation moves described in this section should suffice to relate
any two bridge trisections of a fixed four-manifold pair. Compare with the known uniqueness results [7;
10; 16; 27].

Figure 39: Shadow diagrams depicting the local process of Markov 3–perturbation.
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Conjecture 9.12 Let T1 and T2 be bridge trisections of a given surface .X;F/ that are diffeomorphic
as trisections of X . Then there are diffeomorphic bridge trisections T 01 and T 02 such that T 0" is obtained
from T" via a sequence of moves , each of which is of one of the following types:

(1) a core stabilization ,

(2) a Hopf stabilization ,

(3) a relative double twist ,

(4) an interior perturbation/deperturbation ,

(5) a Markov perturbation/deperturbation.

To prove this conjecture, it should suffice to carefully adapt the techniques of [16] from the setting of
isotopy of closed four-manifold pairs equipped with Morse functions to the setting of isotopy rel-@ of
four-manifold pairs with boundary. The following is a diagrammatic analog to this conjecture.

Conjecture 9.13 Suppose that D1 and D2 are shadow diagrams for a fixed surface-link .X;F/. Then
D1 and D2 can be related by a finite sequence of moves , each of which is of one of the following types:

(1) a core stabilization/destabilization ,

(2) a Hopf stabilization/destabilization ,

(3) a relative double twist ,

(4) an interior perturbation/deperturbation ,

(5) a Markov perturbation/deperturbation ,

(6) an arc or curve slide ,

(7) an isotopy rel-@.
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