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We define 2-functors on the categorified quantum group of a simply-laced
Kac-Moody algebra that induce Lusztig’s internal braid group action at the
level of the Grothendieck group.

1. Introduction

Geometric representation theory has motivated the study of categorical represen-
tation theory. Rather than studying the action of Lie algebras g, or quantum
groups U, (g), on C(g)-vector spaces V with weight decompositions V = D, Vj,
categorical representation theory studies the action of these algebras on graded addi-
tive categories V with decomposition into graded additive subcategories V = €, V.
Rather than linear maps between spaces, Chevalley generators act by functors
Eily Vi = Vg, Fily : Vi — Vi, satisfying quantum group relations up to
natural isomorphism of functors. The novel and distinguishing feature of higher
representation theory is that the natural transformations between such functors
contain a wealth of information that is inaccessible within the realm of traditional
representation theory.

Indeed, the essence of categorification is to uncover this higher level structure
and use it to further our understanding of traditional representation theory, as well
as related fields. In this article we will focus our attention on the categorical
representation theory of the quantum group U, (g) associated to a simply-laced
Kac—Moody algebra g. Categorified quantum groups are the objects that govern
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the higher structure and explicitly describe the natural transformations that arise in
categorical representations. More premsely, we focus on the higher representation
theory of Lusztig’s idempotent form U := U (g). This is a version of the quantum
group that arises in geometric representation theory and is most appropriate for
studying representations with integral weight decompositions. For the precise
definition of U , see Section 2A.

In most instances when U admits a categorical action as described above, the
natural transformations between functors arise via the action of a categorified
quantum group. The latter is a graded, additive, linear 2-category LYQ associated to g.
The objects in UQ are elements of the weight lattice A € X of g, and the 1-morphisms
are generated by Chevalley generators &1, : A — A +«;, ;1) : A —> A —; and
identity 1-morphisms 1, : L — A, i.e., any 1-morphism is given by a finite direct sum
of grading shifts of composites of these generators. The 2-morphisms specify maps
between composites of Chevalley generators. For example, there are 2-morphisms

Xi:gilk_)gilk<2> and Tij:Eié’jl;\—>5j€,~lk(—a,~-aj),

where here, and for the duration, - denotes the symmetric bilinear form specified
by the Catan datum for g (see Section 2A). A novel feature of the categorified
quantum group is its diagrammatic generators-and-relations description in which
all 2-morphisms are conveniently encoded in a 2-dimensional graphical calculus,
e.g., the generating 2-morphisms above have the depictions

A . Ata; +aj A
X; = +on¥ A and T;; = J>< .
i

i

Key features are that F; and &; are biadjoint, and endomorphisms of compositions
of &;’s are given by the so-called KLR algebras developed in [18; 24; 25; 54; 55].
Taken together, the relations on 2-morphisms provide explicit isomorphisms lifting
relations in U , and further guarantee that Ko (UQ) =y , where K denotes taking the
split Grothendieck ring to decategorify. Otherwise, only shadows of this structure are
visible at the decategorified level, e.g., Lusztig’s canonical basis of U is recovered
by taking the classes in K (Z;lQ) of indecomposable 1-morphisms in UQ.

Pioneering work of Chuang and Rouquier demonstrated the importance of the
higher structure in categorical representation theory [18]. At the heart of their work
is a beautiful categorification of the familiar fact that, in any integrable representation
V =P, Vi of sl,, the Weyl group action gives rise to an isomorphism

tl; : Vi = V_,

between opposite weight spaces. In the quantum setting, the Weyl group for sl,
(i.e., the symmetric group G;) deforms to the two-strand braid group B;, and the
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isomorphism t1, can be written in a completion of U (sl,) as the infinite sum

Y peo(—@) FAHDEDT, if 2 >0,

1-1 tly, =
(b ’ {Zazo(—CI)_HaE(_H”)F(”)1,\ if A <0,

where E@ = E%/la]!, F@ = F%/la]! are the so-called divided powers, and
[al! = [ 15— (@™ —qg™™)/(q — g~ 1)) are quantum factorials. Note that, when
acting on an integrable module, only finitely many terms in this infinite sum are
nonzero. From the perspective of categorification, the crucial observation about
(1-1) is the occurrence of minus signs.

For those initiated in the categorification doctrine, the occurrence of minus
signs immediately necessitates the departure from strictly additive categorifica-
tion. That is, we can no longer work with additive categories V,, as there is no
categorical analogue of subtraction therein. To accommodate such minus signs
within a categorical framework, one typically passes to derived, or, more generally,
triangulated, categories, where the translation functor gives a categorical notion
of multiplying by —1. One manner for doing so is to take the categories of chain
complexes Kom(V;) of the weight categories V), in an additive categorification,
and pass to their homotopy categories of complexes Com()),). See Section 3D for
more details on homotopy categories of additive categories and their Grothendieck
groups; we note that we follow [4] in using the nonstandard notation Com to denote
the homotopy category, so as not to confuse with our notation Ky for taking the
Grothendieck group/ring. Under decategorification, the classes of such complexes
are equal to the alternating sum of the classes of their terms in K¢y(V)).

The alternating sum in (1-1) suggests that a categorification of t1, might be
achieved using a chain complex whose differential is built from the 2-morphisms
in UQ (slp). Indeed, Chuang and Rouquier’s work determines chain complexes 71,
and 77'1,, the so-called Rickard complexes, that lift t1, and its inverse t~!1, to
the categorical setting [18]. The composition of complexes 77~ '1, and ~'71; are
both isomorphic to the identity in Com(L'lQ (sl2)), i.e., the complexes are homotopy
equivalent to (but, in fact, not equal to) 1, in Kom(HQ (sl2)). Using this, Chuang
and Rouquier lifted the Weyl group action of sl, to define equivalences

71, : Com(V;) => Com(V_;)

lifting t1, (to be precise, Chuang and Rouquier originally worked in the nonquantum
and abelian/derived setting, with the extension to the quantum and triangulated
setting given in work of Rouquier [55] and Cautis and Kamnitzer [13]).

For general g, the corresponding Weyl group action on integrable representations
deforms to an action of the type-g braid group By in the quantum setting; we will
follow the standard terminology in referring to this as the quantum Weyl group
action. Analogous to the g = sl, case, this action lifts to highly nontrivial braid
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group actions in categorical representation theory [13; 55]. To illustrate their far
reaching impact in mathematics, we recall just a handful of their many applications:

e Chuang and Rouquier use the equivalence induced by categorical sl, actions on
derived categories of modules over the symmetric group in positive characteristic to
resolve Broué’s abelian defect group conjecture for the symmetric group G,, [18].

« Cautis, Kamnitzer, and Licata use categorical sl, actions to resolve a conjecture of
Namikawa [48] asserting the existence of a derived equivalence between cotangent
bundles of complementary Grassmannians 7*G (k, N) and T*G (N —k, N) [10; 16].
These varieties are related by a stratified Mukai flop, and the problem of constructing
such equivalences had previously only been resolved in the kK = 1 case [22; 47] and
for G(2,4) in work of Kawamata [23]. More generally, Cautis, Kamnitzer, and
Licata construct categorical braid group actions on cotangent bundles to partial flag
varieties and Nakajima quiver varieties [11; 13; 15]

 Categorical representations of sl,,, and the associated braid group actions, can
be used to categorify the sl, Reshetikhin—Turaev quantum link invariants via a
categorical analogue of the skew Howe duality between gl,, and gl,, [12; 16; 34; 49].
This perspective has led to the solution of a number of conjectures in link homology
[50; 53], and provides a framework for connecting link homologies defined using
wildly different machinery [12; 34; 39].

At the decategorified level, the braid group action on integrable modules of
U,(g) comes in several flavors:

t;"el)» — Z (_q)EhF'l(ll) El'(b) IA — Z (_q)ebEi(b) F[(a) 1)\_,

(1 2) a,b;a—b=A\; a,b;a—b=A\;
) b b
thi= ) CotEYE L= 3 oPEVE"L,
a,b;—a+b=A\; a,b;—a+b=A\;

where e = £1; see Section 2C for more details. Given the importance of these
braid group actions, it is natural to ask how the braid group action By on an
integrable module interacts with the Uq (g) action. This was answered by Lusztig [38,
Proposition 37.1.2], who showed that, for each node in the Dynkin diagram i € /
and e = %1, there exist algebra automorphisms 7}, and T/, of U = U,(g) uniquely
defined by the condition that, for any integrable U-module V, any z € V, and
ue 11,U 1,, we have the equations

Ti/,e(u)t;,e IA(Z) = t;,elv(uz),

(1-3) ! . b
T, ()t 1,(2) =t 1y (uz).
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Related operators were studied in finite type in [35; 57], then generalized to simply-
laced Cartan data in [36] and general Cartan data in [37]. See Section 2D for more
details.

The algebra automorphisms T’ and T’ ' each define braid group actions on the
algebra U itself that we call the 1nternal brald group action. This internal action
plays an important role, e.g., in the construction of the PBW basis for U. Lusztig
goes on to give precise formulas for the action of T’ and T’ ' on the generators
of U, that unsurprisingly involve minus signs, e.g.,

(1-4) T ((Ej1) = EjEilg0) —qEiEjlgqy ifi-j=-—1,

where here s; are the simple reflections in the Weyl group.
We now describe the results contained in this article. Throughout we let g be a
simply-laced Kac—-Moody algebra.

1A. Categorlfymg T/ ,and T/, In Section 4 we define graded, additive 2-functors
T e T Uy — Com(UQ) To do so, we first assign explicit chaln complexes to
generatmg 1-morphisms in /y that lift the formulae defining T, . and T/, e.g.,

(1-4) lifts to the assignment

T 1(E1) = & EE L) —— EELyo(l) ifi-j=—1,

where (here, and throughout) & denotes the term in homological degree zero.
Functoriality then requires that the composite xy1, of composable 1-morphisms
y1,, and x1, is sent to the composition of chain complexes 7:’ 41 LT i (x1,),
defined using composition of 1-morphisms in UQ in a manner similar to taking
the tensor product of chain complexes. To complete the definition of 7'/ and 7:’ L,
we then assign an explicit chain map ’7' 4 ((x) i +1 x1,) — T 41 (x/lx) to each
generating 2-morphism « : x1, — x/lk in U, e.g., the 2-morphism X;: &L —

£j1,(2) is sent by T/ | to

Pa

& EEL,00(2) L EEi1,0(3)
7;(”“1? ) ? T | f

& Sjgils,-()u) s e— gigjls,-()»)“)

J i
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which is a chain map by the i # j dot sliding relation; see (5) in Definition 3.3.
Finally, we show that the images of relations in Uy are satisfied in Com(Up), up to
homotopy.

Proving that 7:’ +1 1s a well-defined 2-functor requires an immense number of
verifications. The diagrammatic relations defining U/ involve strands colored by
the Dynkin nodes of g, and depend on the adjacency of the colors involved. For
example, the relation involving the greatest number of strands is

toj if¢=kand¢-j=—1,
A= A=
1 Jo|e
¢ ik el k 0 if¢ £kortl-j#—1,

where 7,; is a scalar defined in Section 3A. Showing that 7:’ 41 breserves this relation
for all i and all triples j, k, £ requires considering all possible types of adjacency
relations between the nodes corresponding to i, j, k, £, requiring 27 essentially
distinct case that need to be verified. The complexity is further exacerbated by the
fact that Tl/ 41 often only preserves a relation up to homotopy.

Unfortunately, we are not aware of a means to define the 2-functors lifting
Lusztig’s formulae without explicitly constructing the chain homotopies for each
relation and each possible coloring by nodes i € /. We have made every attempt
to provide sufficient detail in this work to aid in any future applications of these
2-functors, and in particular provide sufficient detail so that the relevant homotopies
can be easily extracted.

Our main result in this article is the following theorem.

Theorem 1.1. Let g be a simply-laced Kac—Moody algebra. Then there is an
explicitly defined 2-functor

Ti 41 :Ug (@) — ComUg ()
so that the induced map
[T 111 Ug(0) = KoUo(9) — Ko(ComUp(9))) = Uy (9)
agrees with T} ;.

At the level of 1-morphisms, such functors have already appeared at the categor-
ical level in [12; 13] and were given a geometric interpretation in [20; 21; 62; 63];
however, to our knowledge, no information about extending these maps to 2-
morphisms has appeared previously. As such, Theorem 1.1 initiates the study
of Lusztig’s operators at the 2-categorical level. In fact, we conjecture much
more. At the decategorified level, Lusztig’s operators are invertible and satisfy the
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braid relations. These properties, combined with our forthcoming work, stated in
Theorem 1.4 below, suggest the following:

/7

Conjecture 1.2. Let g be a (simply-laced) Kac-Moody algebra. Then 7}, | extends
to an autoequivalence of Com(UQ (g)) so that the induced automorphism [77 1l
of U,(g) = Ko(Com(Ug(g))) agrees with T/, and the 7;_, satisfy the braid

relations.

The extension (of domain) to the homotopy category is a problem in obstruction
theory that we plan to attack in future work. Having done so, the proof of braid
relations will be a straightforward (but tedious) check.

1B. Symmetries and the internal braid group action. There are a number of other

(anti)linear (anti)automorphisms o, w, v defined on U; see Section 2B for their

definitions. These (anti)involutions allow one to pass between the variants 7, and
y . . . S

T;", of the internal braid group generators via conjugation, i.e.,

(19) oT,o =T/ ol w=T. YT U=T . V=T,

In [26] these symmetries were lifted to define 2-functors o, w, ¥ on a certain version
of the categorified quantum group. Each has a natural interpretation in terms of
symmetries of the graphical calculus for HQ, and, in the sl, case, were extended to
the homotopy category of complexes in [4].

Recall (or see Section 3A below) that the definition of HQ requires a choice of
scalar parameters Q; it was recently shown that there is a natural normalization for
the categorified quantum group associated to an arbitrary KLR algebra and choice
of Q [5]. This so-called cyclic version of HQ satisfies the property that diagrams
that are planar isotopic relative to their boundaries specify the same 2-morphism
in HQ, a property that only holds up to scalars in previous formulations. Given the
utility of the cyclic version, we also prove the following result, which defines these
symmetries in this setting.

Theorem 1.3. There are invertible 2-functors o, w, V¥ defined on the cyclic version
of the categorified quantum group Ug that categorify the symmetries o, @, ¥, i.e.,

[ol=0, [wl=w, [Y]=v¢

in KoUo(g)) = Uy (9).

Defining these 2-functors requires several subtle aspects involving the choice of
scalars O, so we include the details below in Section 3E. Using these symmetries,
we use the categorical analogue of (1-5) to define the variants 7; _; and 7", of the
internal braid group action.
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1C. Compatibility with Rickard complexes. As noted above, the defining feature
of the internal braid group action at the decategorified level is its compatibility with
the quantum Weyl group action, given in (1-3). In a sequel to this paper [1], we
show that our 2-functors 7:’ 4 satisfy an analogous compatibility with the Rickard
complexes.

To be precise, note that the first equality in (1-3) asserts that the actions of
the elements 7/, (u)t; 1, and t; ,1,u on the A weight space of any integrable
representation agree for all u € 1,U1,. Equivalently, for any integrable represen-
tation V = @, V, there is an equality between the corresponding linear maps
IUU 1 — Hom(Vy, V). At the categorical level, the operation of composing
with the complex rl./’ 4 defines a functor

(1-6) 7/ 111,(—)1, : Homy, (A, v) — Homcomy) (2, 5i (1)),

and we can similarly consider the functor 7:’ e(—)tl.” .11, which maps between the
same Hom-categories. The main result of [1] is the following:

Theorem 1.4. For all objects A, v in Ug, there is an isomorphism of functors
(1-7) 2 L OLET (5T L
between Hom-categories Homy, (A, v) — Homcomy) (A, 5i (V).

1D. Applications of the internal braid group action.

1D1. PBW basis and their categorifications. In finite type, Lusztig’s internal braid
group action can be used to deduce the quantum PBW theorem for U (g), providing
a basis of monomials that are useful in many applications. The KLR algebra
provides a categorification of U (g) via its category of projective/finitely generated
modules [24; 25; 55]. Therein, the indecomposable projective modules correspond
to the canonical basis of U™ (g) [59], while the simple modules correspond to
the dual canonical basis [8; 60]. At the categorical level, the analogues of PBW
monomials lead to a rich theory of standard modules for KLR algebras. In finite
type, standard modules were first described in [31] (see also [6; 9; 19; 20; 41; 42]),
and in affine type they were studied in [29; 30; 43; 58]; in these studies, the focus
has been on finding specific modules over KLR algebras that lift a given PBW
monomial. In forthcoming work [44], McNamara plans to use our 2-functors 71'/ 41
to build projective resolutions of standard KLR modules, producing a categorical
lift of Lusztig’s internal braid group construction of the PBW basis, and giving a
strengthening of Kato’s results on reflection functors for KLR algebras [20].

1D2. Quantum affine algebras. There is no obstruction to defining the 2-functors
77 41 1n arbitrary symmetrizable type, except that the check of well definedness is
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much more involved. For example, Lusztig provides the explicit formula

—i-l
(1-8) T (Eel) =Y () EfVEET 0
j=0

in arbitrary type (compare to (1-4) above), which suggests that the categorified
Lusztig operator 77 | should send &1, to a complex of length 1 —i - £. It is not
difficult to specify a complex lifting (1-8), for example, we could set

) w & g0

Here, the terms in the differential are given using the thick calculus from [27], and
an easy computation therein verifies that they square to zero. The appearance of
complexes containing more than two nonzero terms suggests that even more of the
defining relations in HQ may be preserved by 7:’ , only up to homotopy, exacerbating
the difficulty of checking that these 2-functors are well defined. Despite this, we note
one interesting application of an extension of our 2-functors to non-simply-laced
type: it may be possible to promote Beck’s description [3] of the loop presentation
of affine algebras in terms of the internal braid group action to the categorical level,
giving a categorification of affine algebras in their loop realization.

T (EeLy) = MEET 150y

id

— > &&ETT V000

Eelgon(—i-L).

1D3. Link invariants and skew Howe duality. As referenced above, one can study
the sl,, quantum link invariants via U(sly) representation theory using quantum
skew Howe duality. The latter is the quantum analogue of the duality arising
from the commuting actions of U (sl,,) and U (sl,,) on the quantum exterior power
/\N (C’q" ® (CZ). The s, link invariants admit a formulation in terms of MOY
calculus [46] and sl,, webs [28; 32; 45], certain trivalent graphs which specify the
morphisms in a diagrammatic description of the category of U (sl,) representations.

Cautis, Kamnitzer, and Morrison show that skew Howe duality admits a graphical
description in terms of so-called ladder webs, and use this to give an entirely
diagrammatic description of the full subcategory of quantum sl, representations
tensor generated by the fundamental representations [17]. In this formulation,
skew Howe duality specifies a representation of U (sl;) in which an sl,, weight
A= (A1, A2, ..., Apy—1) is sent to the to the m-tuple (ay, as, ..., a,;) that satisfies
0<a; <n, Z;":l ai = N and A; = a; — a;4+1, and weights not satisfying these
conditions are sent to zero. This representation maps the generators of U (sl,,) as
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follows:

Tl T - 1T

ap aj—1 a;  4j414di42 am aj—1 aj  4j+14i42 am

Under this representation, the braiding on the category of U (sl,) is given by the
quantum Weyl group action, that is, diagrammatically, we have

v [T AT T o TTXTHT

ai—1 aj 4j41 4j42 Aam aj—1 aj Gj41 Gi42 am

In this way, these link invariants can be computed and studied via the elements in
U (sl,,) corresponding to a given link diagram.

Under this correspondence, the internal braid group action plays an interesting
role in the diagrammatic description of quantum sl,, link invariants, as (1-3) shows
how to slide the image of an arbitrary element u € U (sl,,) through a crossing, i.e.,
it gives the equality

[IXT T e
1 |u| [ i || 7\ |

aj a1 aj Gy G423 apm a a1 aj Giy) Gy2  apm

where we abuse notation in denoting elements in U (sl,,) and their images under
the skew Howe representation via the same symbols.

This entire story lifts to the categorical level, allowing for the study of Khovanov
homology [34] and Khovanov—Rozansky homology [12; 49] following Cautis,
Kamnitzer, and Licata’s pioneering work in using categorical skew Howe duality
to study algebro-geometric categorifications of the sl,, link polynomials [16]. The
crucial point is that (1-9) lifts to map the Rickard complexes to the chain complexes
assigned to crossings in sl, link homology.

In the foam-based description of link homology [2; 40; 49], categorical skew
Howe duality maps generators in CIQ (sl,,) to explicit sl,, foams, certain singular
surfaces that categorify sl, webs. Theorem 1.4 then explicitly shows how to slide
not only webs, but also foams mapping between them, through crossings in s,
link homology. At the level of 1-morphisms (webs), this interaction is key to the
stability results used to define s[,, analogues of Jones—Wenzl projectors [12; 51; 56],
and we anticipate that our extension to the level of 2-morphisms will prove useful
for future arguments in link homology.
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2. The quantum group and Lusztig symmetries
2A. The quantum group U, (g).

2A1. Root datum. For the remainder of this article we restrict our attention to
simply-laced Kac—Moody algebras. These algebras are associated to a choice of
simply-laced Cartan datum consisting of

¢ a finite set I, and
e a Z-valued symmetric bilinear form - on Z/ satisfying i -i =2 foralli e /
andi-je€{0,—1} fori # j,

and root datum given by

 a free Z-module X, called the weight lattice, and

e a choice of simple roots {«;}ic; C X 'and simple coroots {h;}ic; C XV =
Homyz (X, Z) that satisty (h;, oj) = 2%, where here (-,-): XV x X —> Zis
the canonical pairing.

In this case, a;j := (h;, aj) =i- j, s0 (a;})i jer 1s a symmetric generalized Cartan
matrix. Given an arbitrary weight A € X, we will often abbreviate (h;, 1) by either
(i, M) or simply by A;. We let {A;}ic; C X denote the fundamental weights, which
are characterized by the property that (h;, A;) =6;; forall i, j € 1.

We let Xt C X denote the dominant weights, which are those of the form
> i AiA; for A; > 0. Associated to a simply-laced Cartan datum is a graph I'
without loops or multiple edges, with a vertex for each i € I and an edge from
vertex i to vertex j if and only if i - j = —1.

2A2. The simply-laced quantum group. The quantum group U = U,(g) associ-
ated to a simply-laced root datum is the unital, associative Q(q)-algebra given by
generators E;, F;, K, fori € I and u € X", subject to the relations

() Ko=1and K, K,y = K4, forall u, u’ € XV,

(b) K Ei =g E;K, foralliel,peX,

() K, F;=q " FK, foralliel, peX,

(d) E;F;—F;E; =6;;((Ky, — Kh_l_l)/(q —q_l)), where we set K; := Kj,, and
(e) foralli # j,

Y CUEBET =0 ma Y 0RO =
at+b=—(i,a;)+1 atb=—(i,a;)+1

where E\” = E¢/[a!, F\” = F{/[a]l, and [a]! = []},_; (" —q™™)/(g —q~")).
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2A3. The integral idempotented form of quantum group. We will work with the
idempotent form of U, which is adapted to the study of U-modules with weight
space decompositions. This nonunital algebra is equipped with a collection of
orthogonal idempotents, and hence can be described as a Q(g)-linear category
U= Uq (), defined as follows. The objects of U are elements of X, and the
Hom-space between A, v € X is defined to be

U()», V) = U/( Z U(K,u_q(ﬂ,}»))_i_ Z (K/l _q(u,v))U>'

nexy nexy

The identity morphism of A € X is denoted by 1, and we will typically abbreviate
the element 1,x1, € Ui, ) determined by x € U by either 1,x or x1y, e.g.,
we have E;1, = 1,44, E; and F;1, = 1,_o, F;. Composition in U is induced by
multiplication in U, that is,

(Iux L)Lyl = Luxyly

forx,yeU, A, u,v € X. The idempotent form U admits an integral form, defined

as the Z[q, ¢~ ']-lattice 4U C U spanned by products of divided powers E l.(a) 1,
(a)

and F;"'1;.

2B. (Anti)linear (anti)automorphisms of U. We use several Zlq, g~ '1-(anti)linear

(anti)automorphisms in this paper. For f € Q(q), let f — f be the Q-linear

involution of Q(g) that sends ¢ to ¢~ !.

e The Q(g)-linear algebra anti-involution ¢ : U — U is given by
g(E)=Ei, o(F)=F, oK)=K ",
o(fx)= fo(x) for feQ(g)andx €U,
oxy)=a(y)a(x) forx,yel.

o The Q(g)-linear algebra involution w : U — U is given by
W(E)=F, oF)=E, oK)=K",
o(fx)= fo(x) for feQ(g)andx €U,
o(xy) =wx)w(y) forx,yel.

* The Q(qg)-antilinear algebra involution ¢ : U — U is given by
V(E)=E;, Y(F)=F, ¥EK)=K "
Y (fx)=fyx) for feQ(g)andxeU,
Y(xy) =y x)y(y) for x,yeU.
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These (anti)linear (anti)involutions pairwise commute and generate the group
G = (Z»)? of (anti)linear (anti)automorphisms acting on U. The (anti)involutions
o, w, and ¥ all extend to U and 4U by setting

o) =1, ol)=1,, vy =1,
and taking the induced maps on each summand 1, U 1;.

2C. Quantum Weyl group action on integrable U-modules. Let V = b, Vi be
an integrable U-module. Then, for e = 1, Lusztig [38, 5.2.1] defines linear maps
t, ,t/ :V—>Vby

i,e’ “i,e

t;’e(Z) — Z (_l)bqe(—aC-‘rb) Fi(a) Ei(b) Fl-(C)Z,
a,b,c;a—b+c=A;
t;ie(z) — Z (_l)bqe(faC*Fb)Ei(u)Fi(b)Ei(C)Z’

a,b,c;—a+b—c=M\;

for z € V, that are commonly called the quantum Weyl group elements. They are
mutually inverse automorphisms (specifically, they satisfy t; ,t/ _, =Id=t/_,t; )
that satisfy the relations

2 A A S A /N /AN /N ] B
tietjelie =t tietje and &t t;, =t; b t;, ifi-j=-1,
Y Y A/ /AN Los s

totie =t otie and totie =1t otie if i-j=0,

and thus define an action of the type-g braid group on any integrable module [38,
Theorem 39.4.3]. This action on a particular weight space can be conveniently
described by the infinite sums

t;,elk — Z (_l)bqe(—aC+b) F'i(a) Ei(b) F‘i(c)l)”
a,b,c;a—b+c=\;
t;fel)h = Z (_l)bqe(—ac+b) Ei(a)Fi(b) Ei(C)l)L

a,b,c;—a+b—c=M\;

of elements in U, from which the maps t. , .t/ can be recovered by taking the sum

over all A € X. It was shown in [17, Lemma 6.1.1] that these elements admit the
simpler form given in (1-2) above, that is, all terms with ¢ # 0 cancel.

2D. Lusztig’s internal braid group action. For each i € [ and e = 1, Lusztig
defines algebra automorphisms 7}, and 7;”, of U = U,(g) defined uniquely by the
compatibility with the quantum Weyl group action given in (1-3) above. They are
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given explicitly in [38, 41.1.2] by

T/ (1) = 1),

—q P il ifi =¢,
T (E¢ly) = { E¢Eilg0) —q°EiE¢ls ) ifi-£=—1,
(2-1 E¢lg0) ifi-£=0,
—q*ME;i 1,6y ifi = ¢,
T/ (Fel) =\ FiFelgo) —q “FoeFilgo) ifi-€=—1,
Fily o ifi ¢=0,
and
T/, (1,) = 1),
—q_e()”")Filsl.()h) ifi =¢,
T/, (E¢ly) =y EiE¢lg o) —q EeEilyy ifi-£=—1,
Eelyo ifi- =0,
—q*%VE 1500 ifi =¢,
T/, (Fel,) = FeFilg0) —q°FiFelgy ifi-€=—1,
Fily o ifi-¢=0,

where s; is the Weyl group element corresponding to the simple root «;, i.e.,
si(\) = A — (i, A) ;. Lusztig further shows [38, 41.1.1] that (7/,)~' = T/_,, and
that these automorphisms interact with the automorphisms from Section 2B as in
(1-5) above. As a consequence, we see that both 7/, and T}, are invariant under
conjugation by the triple composite cw .

In what follows, we focus our attention on the automorphisms Tl/ |» since similar
results can be deduced for 7"1.”’_ 1 7"1.”’1, and Tl/ _, using (1-5). When the context is
clear, we will abbreviate Tl/ , by Ti’ . In [38, 39.2.4 and 39.2.5], Lusztig shows that
the 7} satisfy ’

T'T,)T =T)T/T, ifi-=-1,

T/T,=T,T/  ifi-£=0,

and hence defined a type-g braid group action on U.

3. The categorified quantum group

We recall the definition of the categorified quantum group Uy (g), specifically the
cyclic version from [5], and establish a number of additional properties needed for
our arguments.

3A. Choice of scalars Q. Let K be a field, not necessarily algebraically closed or
characteristic zero.
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Definition 3.1. A choice of scalars Q associated to a simply-laced Cartan datum,
consist of elements {#;;}; je; satisfying

o tjj=1foralli e I andt;; e K* fori # j,

o lij =1ji when ajj = 0.
We say that a choice of scalars Q is integral if t;; = £1 forall i, j € I.

The choice of scalars Q controls the form of the KLR algebra R that categorifies
the positive half of the quantum group U, and the 2-category Up(g) is governed
by the products v;; = tl.;lt ;i taken over all pairs i, j € I, which can be viewed as a
k*-valued 1-cocycle on the graph I associated to the Cartan datum.

Definition 3.2. A choice of bubble parameters C consists of elements ¢; ; € k* for
i € I and A € X. We say that they are compatible with the scalars Q if

(3-1) Cita,/Cig = lij-

Given any choice of scalars Q, we obtain a compatible choice of bubble parame-
ters by fixing c; , for a representative in every coset of the root lattice in the weight
lattice, and then extending to the entire weight lattice using (3-1). For a compatible
choice, note that the bubble parameters remain constant along an sl,-string since

n
Ci+na; = 1;;Cin = Ci ).

3B. Definition of the 2-category Uy (g). Recall that a graded linear category is
an additive category equipped with an auto-equivalence (1) called the shift (see, for
example, [2]), and a graded additive 2-category is a category enriched in graded
linear categories. Throughout, we will use (¢) to denote the auto-equivalence
given by applying (1) ¢ times, and (—) to denote the auto-equivalence obtained by
applying the inverse of (1) ¢ times.

Definition 3.3. Fix a choice of scalars Q and compatible bubble parameters C.
Then the 2-category Uy := Z/{Cch (g) is the graded linear 2-category with:

e Objects: A € X.

e l-morphisms: formal direct sums of shifts of compositions of the generating
1-morphisms:

L., Liyéi=Lio&lh =61, Lli_oFi =Lli—oFili=F1,

fori € [ and A € X.
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» 2-morphisms: Hom-spaces are K-vector spaces spanned by (horizontal and verti-
cal) compositions of the decorated tangle-like diagrams

A ] UL AL > RLQ),
}€M&@h»5@hprﬂ, ?élﬁﬁﬂr»ﬂﬁhhﬁn
};uﬂ@heﬁﬁh, >§M&ﬂhaf@h,
&]A:h—%ﬁﬁhﬂ+hx Kykzh-aaﬁhu—xm
[gkzﬁah—ahu+mx /ﬁf:aﬁhfahu—xm

Note that we follow the grading conventions in [14; 34], which are opposite
to those from [26]. We read such diagrams from right to left and bottom to top,
and the identity 2-morphisms of the 1-morphisms &;1, and F;1, are depicted by
upward and downward oriented segments labeled by i, respectively.

The following local relations are imposed on the 2-morphisms:

(1) Right and left adjunction:

A Al Ata;
mk }\.+Oli
A+a; Atai | A A+

(2) Dot cyclicity:

A A+
m AT Ao
A+ A

> >
>
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(3) Crossing cyclicity:

R
i J

i J i J
A = A = A,
j><i \}{\
j i j i
. . .
i

A =
25
J J i
The next three relations imply that the £’s (and F's) carry an action of the KLR
algebra associated to Q:

(4) Quadratic KLLR:

Eﬁx tij)[)[ ifi-j=0,
= i j
i J
i
l J

(5) Dot slide:

1

%_%:%_i J

(6) Cubic KLR:

lij ifi=kandi-j=-—1,

iONG Tk il Nk 0 ifi£kori-j#—1.
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(7) Mixed EF: fori # j,

i j i J i j i J

(8) Bubble relations:

A ) A » .
G _einldy, ifm=0, @ e 1da, ifm =0,
ri—14+m 0 lfm < 0’ —Ai—1+m 0 lfm < 0

(9) Extended sl, relations: These final relations are the most involved, and require
the introduction of fake bubbles — positive degree endomorphisms of 1, that are
denoted by a bubble carrying a formal label by a negative number of dots. They
are defined by

. A
) —QAE:fg}f f(}» if0<j<—htl,

i
/Q = a+b:} ri—1+a —Xi—1+b
b>1

s 0 if j <0,
when 1; <0, and by

A=t ) ifo<j<n+1,

= a+b:/ Ai—1+a —Ai—1+b
a>1

i

—Ai—1+j oo
! 0 if j <0,

when A; > 0. The extended sl relations are then as follows, where we employ

the convention here (and throughout) that all summations are “increasing”, that is,

Za+b+c=u X iszeroif u <O0:
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Remark 3.4. We will find it helpful to work with the reduced presentation for ¢/
where we restrict to the generating 2-morphisms

At ¥ gl = E1,(2), >< 1 EEL, = EEL(—i j),
; i

Lo BELO+A), N L SRLA =),

1 A A

i

. A
AN TFREL S LA, N EFRL > L =),

Indeed, the downward dot 2-morphism and sideways and downward crossings can
be defined in various ways by composing the upward versions with caps and cups,
and the cyclicity relations show that they do not depend on the choices made in
doing so. Further, Brundan [7] has shown that this presentation can be further
simplified to agree with the one given by Rouquier [54] that requires a smaller set
of axioms, together with the requirement that certain 2-morphisms are (abstractly)
invertible. Although this further reduced presentation is helpful in checking that
biadjointness and cyclicity hold in various 2-representations, it is not useful in our
present work, as showing that the required maps are invertible essentially requires
verifying the omitted axioms in Uy.

3C. Additional relations in Ug. Here, we collect additional useful relations that
will be used in later sections.

3C1. Curl relations. Dotted curls can be reduced to simpler diagrams using

A i ok "

--x ol Y - %

i fitfr ;| ai—1+ ; 81+8 —)—1+ i
i :m—Ail i i) i Sty i 82 i

Note that in [14; 33] the m = 0 cases of these relations were included in the
defining list of relations, but it was shown in [5, Lemma 3.2] that these relations
(for arbitrary m) follow from the relations presented above.

3C2. Infinite Grassmannian relations. These relations are obtained by equating
the terms homogeneous in ¢ in the expression below:

(G G o) (GG et )i

—xi—1 —xi—1+1 —Aj— Ai—14+1 ri—l4a

For low powers of ¢, these relations encode the definition of fake bubbles in terms of
(real) bubbles, and, for higher powers of ¢, they follow from the curl and extended
sl relations.
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3C3. Bubble slides. In what follows, we make use of the shorthand notation [27]

A A A A
l: . 1: l: . 1:
o+t (iA)-l+a a+to (M) —lta

As long as o > 0, this notation makes sense even when ® + « < 0, in which case
these are the fake bubbles defined in the previous section.
Counterclockwise bubbles can be slid through upward oriented lines via

o Ataj g
Z(a—i—l—f)@ ifi=j,
7=0 als
J
N )\—l-Olj )u+06j
A=l L G 1 wae
Nto Na—1
J )u—l-Olj
tij @ ifa,-j =0,
Nta
J
) A A A
i 24 + Q ifi = j,
A+ o o+ (@-2) ®+(a—1) o
i -1 Y i
€ : o
-1 -1 - i .
e D Q if ajj = -1,
f=0 a+a—f)
J

and we have similar relations involving clockwise bubbles:

« A
o—
dla+1-f) G ifi = j,
=0
f ' Py
A A
A i i .
z: — 1 Q +1ij G if a;j = —1,
N+a—1 Mo
Nta j j
/ A
tji G ifa,-j =0,
o
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*+ 2x+ai k_—i—ozi

2 1 l . . .
G -2 G + G ifi = j,
A at+(@—2) N+(a—1) o
Q o Ataj f
N+ — — x .
j ’ tijl Z(_tijltji)f G if gjj = —1.
f=0 Oa—f
J
Both types of bubbles can then be slid through downward oriented lines using these
relations and the cyclicity of Uy (g).

3C4. Triple intersections. We have

i J k i J k .
IW A ’K./: A

> Q T4y d@ ifi=j=k,

atbtc+d Wb a+b+ctd Laxd

=SNG i TR e

0 else,

which is [33, Proposition 5.8] when i = j =k, and follows from cyclicity, the mixed
EF relation, and the cubic KLR relation in the other case.

3D. The 2-categories UQ, Kom(lZQ), and Com(L'lQ).

3D1. Categories of complexes. Given an additive category M, we let Kom(M)
denote the category of bounded complexes in M. By convention, we work with
cochain complexes, so an object (X, d) of Kom(M) is a collection of objects X'
in M together with maps

o di xi-1 di_y X d; xit! dit

such that d;d; = 0 and only finitely many of the X*’s are nonzero. A morphism
f:(X,d)— (Y,d’) in Kom(M) consists of a collection of morphisms f; : X' — Y
in M such that fi1d; =d f;.

Recall that morphisms f, g : (X,d) — (Y,d’) in Kom(M) are called (chain)
homotopic, denoted by f ~ g, if there exist morphisms i’ : X' — Y/~! such
that f; — g; = hitld; + dl.’_lhi for all i. A morphism of complexes is said to be
null-homotopic if it is homotopic to the zero map.
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Definition 3.5. The homotopy category Com(M) is the additive category with
the same objects as Kom(M) with morphisms given by morphisms in Kom(M)
modulo null-homotopic morphisms.

We say that two complexes (X, dx) and (Y, dy) are homotopy equivalent provided
they are isomorphic in Com(M), and denote this by X ~ Y.

If M is monoidal, then Kom(M) is also monoidal, with the tensor product
(XY,d) of (X,dyx) and (Y, dy) defined as

(3-3) (XY) = @ X'YS, d;:= Z (dx), Idys +(=1) Tdx- (dy)s.

r4s=i r+s=i

Here, we denote the tensor product of objects and morphisms in M by juxtaposition.
Given chain maps f : (X, dx) — (X', dy) and g : (Y, dy) — (Y, dy’) define the
tensor product fg: (XY,d) — (X'Y’,d") of chain maps by setting

(3-4) fi= @ fras

r+s=i

It is straightforward to check that if f ~ f" and g ~ g/, then fg ~ f’g’, so Com(M)
inherits a monoidal structure from Kom(M).

Remark 3.6. More generally', if C is an additive 2-category, we can consider
the 2-categories Kom(C) and Com(C) obtained by taking complexes in each Hom-
category. The above description of tensor product of complexes specifies how to
take horizontal composition in Kom(C) and Com(C).

3D2. Karoubi envelope. The Karoubi envelope Kar(M) of a category M is the
universal enlargement of M in which all idempotents split. Recall that we say an
idempotent e : b — b in a category M splits if there exist morphisms b -5 b’ A
such that e = hg and gh = Idy. The Karoubi envelope Kar(M) admits an explicit
description as the category whose objects are pairs (b, ¢), where e : b — b is an

idempotent of M, and where morphisms are triples of the form
(e, f.e):(b,e)— (V' €)

for f : b — b’ in M satisfying f = ¢ f = fe. Composition is induced from
composition in M, and the identity morphism is (e, e, e) : (b, e) — (b, e).

The identity map Id, : b — b is an idempotent, and the assignment b — (b, Idy)
defines a fully faithful functor M < Kar(M), and this functor is universal among
functors from M to idempotent split categories. If M is additive then so is Kar(M)
and this embedding is additive; in this case, for (b, ¢) € Kar(M), we have that
b=ime ®im(Id, —e) where ime := (b, e). See [33, Section 9] for more details.

IRecall that a monoidal category can be interpreted as a 2-category with only one object.
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The following result shows that the Karoubi envelope interacts nicely with
passage to (homotopy) categories of complexes.

Proposition 3.7 [4, Propositions 3.6 and 3.7]. For any additive category M
there is a canonical equivalence Kom(Kar(M)) = Kar(Kom(M)). If M is k-
linear with finite-dimensional Hom-spaces, then there is a canonical equivalence

Com(Kar(M)) = Kar(Com(M)).
3D3. Karoubi envelope of Uy.

Definition 3.8. The additive 2-category Z/.{Q has the same objects as U/p and has
Hom-categories given by ZLIQ (A, A1)y =Kar(Ug (A, 1)).

Horizontal composition in Z;IQ is induced from composition in Uy using the
universal property of the Karoubi envelope, and we similarly obtain an additive, fully-
faithful 2-functor Uy — L[Q that is universal with respect to sphttmg idempotents
in the Hom-categories L{Q (A, A). The significance of the 2-category L{Q (g) is given
by the following theorem.

Theorem 3.9 [26; 33; 61]. There is an isomorphism y : AU =5 KO(UQ (g)) where
Ko (UQ) denotes the split Grothendieck ring of UQ.

For g = sl,, this theorem also holds over Z by the results in [27].

3D4. Karoubian envelopes of Kom(U) and Com(U{). Following Remark 3.6 above,
we consider the 2-categories Kom(U/p) and Com(U). Noting that the 2-Hom-spaces
Up(x, y(t)) are finite-dimensional k-vector spaces for each ¢t € Z, Proposition 3.7
gives equivalences

Kar(Kom(Up)) = Kom(Uy), Kar(Com(Up)) = Com(Up).

We arrange the various 2-categories built from U/ into the following diagram,
wherein the horizontal arrows denote passage to the Karoubian envelope, and vertical
arrows denote the canonical maps between the various categories of complexes:

UpC© U = Kar(Up)

|

Kom(Up) —————— Kom(Up) = Kar(Kom(U))

| l

Com(Up)————— Com(Up) = Kar(Com(U))
Theorem 3.9 and the main result of [52] imply that

Ko(Kar(Com(p))) = Ko(Com(Kar(Up))) = Ko(Kar(Up)) = Ko(Ug) = AU,
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where we employ the triangulated Grothendieck group for the categories of com-
plexes. We can hence view the Karoubi envelope of the homotopy category Com ()
as a categorification of the integral idempotent form 4U of the quantum group.

3E. Symmetries of categorified quantum groups. We now use symmetries of the
diagrammatic relations in U/ to define 2-functors o, w, and ¥ (for a general choice
of scalars Q and bubble parameters C) that lift the symmetries of quantum groups
from Section 2B. This extends the work of Khovanov and Lauda in [26], who defined
such functors in the specific case where 1;; =1 =c¢;, foralli, j € I and A € X.
These 2-functors extend naturally to 2-functors on UQ, Kom(UQ), and Com(Z/'IQ) [4],
and induce the corresponding quantum group symmetries o, w, and ¥ on 4U upon
passing to K. For this reason, we refer to them as symmetry 2-functors.

Rather than being 2-endofunctors of ¢/, some of these symmetries map between
versions Up and U ’Q of the categorified quantum group corresponding to different
bubble parameters. (Caveat lector: L{/Q should not be confused with U/ from [14]
which instead corresponds to a different choice of scalars 0.) We define Z/Q to be the
2-category given in Definition 3.3, but with the bubble parameters for ¢/, replaced
by primed bubble parameters (c; ;) := < i ,- The primed bubble parameters are
still compatible with the choice of scalars Q (used for both ¢/ and LI/Q), since

-1
(Cipte)) _ CimOtap _ Cion £
= — = =1lj.

(cin)' ity Ci—h—a,

In addition to mapping between versions of the categorified quantum group corre-
sponding to different bubble parameters, the symmetry 2-functors possess various
flavors of contravariance. Nevertheless, they are morally pairwise-commuting invo-
lutions, as the double application of a given symmetry is the identity and the result
of a composition does not depend on the order, despite the domain and codomain
being different versions of the categorified quantum group. Given this, we will
slightly abuse notation and refer to the symmetry and its inverse by the same symbol.

3E1. Forms of 2-categorical contravariance. Recall that a contravariant functor
C — D can be rephrased in terms of a (covariant) functor C — D°P, where DP is the
opposite category, defined to have the same objects as in D, but with D°P(x, y) :=
D(y, x), i.e., the direction of the morphisms is opposite to that in D. For a 2-
category C, we can take the opposite 2-category in various ways, depending on
whether we take the opposite at the 1-morphism or 2-morphism level (or both).
Denote by C°P the 2-category with the same objects as C, and where we’ve taken
the opposite with respect to 1-morphisms, that is, for objects x, y in C, we let the
Hom-categories be given by C°P(x, y) := C(y, x). Let C* denote the 2-category
with the same objects and 1-morphisms as C, but with opposite 2-morphisms, i.e.,
for objects x, y in C, we let the Hom-categories be given by C*°(x, y) :=C(x, y)°P.
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Finally, C®°°P is the 2-category in which we’ve taken opposite 1-morphisms and
2-morphisms, in other words, C*°°P(x, y) := C(y, x)°P.

In the case of the 2-category U, functors between these opposite 2- categorles cor-
respond to Z[q, ¢~ ']-(anti)linear algebra (anti)automorphisms of AU upon taking
the Grothendieck group, as summarized in the following table:

2-functor induced map on AU

Z;lQ — HQ Z[q, g~']-linear homomorphism
LYQ — UOP Z[q, q~']-linear antihomomorphism
UQ — L{ Z[q, g~ ']-antilinear homomorphism

LIQ — Z/{CQOOP Zlq, qil]-antilinear antihomomorphism

In the following sections, we will explicitly describe o, w, and . To do so, we
will use the notational convention from [26] that £_; := F;.

3E2. The 2-functoro :Ug — (Z/I’Q)Op. Consider the operation on the diagrammatic
calculus or U that reflects a diagram across a vertical axis, replaces A <> —A, and
scales all ii-crossings by —1. This operation is contravariant for composition of
I-morphisms, covariant for composition of 2-morphisms, preserves the degree of a
diagram, and takes relations in Ug to those in U/;,. As such, it defines an invertible
2-functor given explicitly as

o Uy — Uy,
A=A, 1,84 84, - Ex, () > 1 Ea, - - E4in Ei 1 (1),

Koy XX s e X

rJ

Koy X ><: > (—1)% ><

1] Jl
—A —A
m'ﬁﬂ,UHU U U ﬂHm

CieT iet el b

This extends to a 2-functor o : Kom({/p) — Kom (Z/{/Q)Op defined on 1-morphisms via

Lo(di—y)

X,d) > (- — o(X'™h Do) o (X1 (D', o (Xt = ..

and on 2-morphisms by applying ¢ componentwise. The alternating differential
is essential here to preserve composition of 1-morphisms (contravariantly), due to
the sign conventions in taking horizontal composition of complexes.

3E3. The 2-functor w : Ug — M’Q. Consider the operation on the diagrammatic
calculus for U that reverses the orientation of each strand, replaces A <> —A, and
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scales all ii-crossings by —1. This operation is covariant for composition of both 1-
morphisms and 2-morphisms, preserves the degree of a diagram, and takes relations
in Uy to those in Z/I/Q. This defines an invertible 2-functor given explicitly as

w:Ug —> Z/I'Q,
A=A, 1,84 Exiy - Ex, L) = 1 5 iy - - E5i, L),

A><J s (= 1)% ><v., X. > (= 1)% A><A.,
Ko (1 >< ><i > (1) ><

tJ
—A i —A
mHﬂ,UH\J U U vf\l—>/\v

ol b Lot et

This extends to a 2-functor w : Kom(Up) — Kom(u/Q) defined on 1-morphisms via

w(di—1) w(d;)

X,d)— (- — o(X'h (X)) o(XTHh > ..

and on 2-morphisms by applying « componentwise.

3E4. The 2-functor ¥ :Ugp — (Up)°. Consider the operation on the diagrammatic
calculus for Uy that reflects a diagram across a horizontal axis, and reverses the ori-
entation. This operation is covariant for composition of 1-morphisms, contravariant
for composition of 2-morphisms, and preserves the relations in Uyp. It determines
an invertible 2-functor given explicitly as

VilUp — Up)®,
A=A, 1,848y - - Ex, L) > L84 Exiy - - - E4, (1),

KR KR KK K

J 1
A i i i i A
QH}JA, U)LH/\{ ; KJ)LHVK\, [\'—’i%,
l l
=T tet =] 1t
Note that i must negate grading shift in order to be degree-preserving, due to
2-morphism contravariance. As such, it descends to an antilinear map on the

Grothendieck group. This extends to a 2-functor ¥ : Kom(Up) — Kom(Up)“® given
on 1-morphisms by

(X, d) — ( RN w(Xi-i-]) Y (d;) 1’0(}(1) Y (di—1) ”(//(Xi_l) N )
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and on 2-morphisms by applying ¥ componentwise. Implicit in this formula
is that ¢ negates the homological degree, i.e., for (X, d) in Kom(l/) we have
YX) =YX,

3ES. Properties of symmetries of categorified quantum groups. The symmetries
0, w, and Y are graded, additive, K-linear 2-functors, and it is immediate from their
definitions that each squares to the identity. The induced 2-functors on categories
of complexes descend to homotopy categories. The following result is immediate
from the above definitions.

Theorem 1.3. Under the isomorphism
Ko(Ug) = AU = Ko(Up)

(see Theorem 3.9), the 2-functors defined above descend to the corresponding
symmetries: [0] =do, [w] =dw, [V] =dV.

Remark 3.10. The symmetry wy (which reflects a diagram across a horizontal
axis, sends A to —A, and scales all ii-crossings by —1) is closely related to the
Chevalley involution introduced in [7]. There, Brundan uses this to move between
the 2-categories Z/{CQ0 and Uy associated to different choices of scalars. In the cyclic
setting, changing the choice of scalars from Q to Q’ is no longer necessary, provided
we change the choice of bubble parameters from C to C’ as above.

4. Defining the categorical Lusztig operator 7:: 1

We now proceed to explicitly define additive, K-linear 2-functors 77 | Ug —>
Com(Up) for each i € I. In Section 4A we define 7, on objects and generating
1-morphisms, and extend via additive 2-functoriality to all 1-morphisms, i.e., we
send the horizontal composition of generators to the appropriate horizontal com-
position of the complexes giving their images, via (3-3), and map direct sums to
the corresponding direct sums. In Section 4B, we extend this definition to the
2-morphisms in Uy, assigning explicit chain maps to generating 2-morphisms,
again extending to all 2-morphisms as required by additive 2-functoriality.

Section 5 is then devoted to showing that 77 | is well defined, that is, showing
that it preserves all defining relations on 2-morphisms of &/, up to chain homotopy.
We also explicitly compute the chain homotopies involved. We note that this check
is considerably lengthened due to the many relations that must be checked, and the
piecewise nature of the definition of the (categorified) Lusztig operator, specifically,
its dependency on the value of the bilinear form on /.

Theorem 1.1. Let g be a simply-laced Kac—Moody algebra. Then the data given
below defines a 2-functor

T 41 : Ug(g) > Com(Uyp(9))
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so that the induced map on Ky (UQ () = Uq () satisfies
[T 1 =T} 41 : Ug(@) = Uy (@).

Given this, we then define the other versions of the categorified Lusztig operators
using the symmetries of categorified quantum groups from Section 3E.

Definition 4.1. Let
7;,,Ll = 07210’ 77/1 = wlﬁflw’ 7271 = Wﬁfﬂﬁ»

where in each case we apply 7/, on the appropriate version of the categorified
quantum group, as determined by the codomain of the categorified symmetry.

The following result now follows from Theorems 1.1 and 1.3.

Corollary 4.2. Upon passing to KO(HQ (g)), we have

[T_)= [6T/ 101 =0T |llcl=a T 0 =T/,
[T = [07; 0] = [0][T,1[0] = T, 0 =T/},
(7= WT ¥l =T W =y T v =T _,.

Recall from the introduction that, while a similar categorification has previously
been defined on 1-morphisms [12], our definition extends to the 2-morphisms in
LYQ (g), meaning that our categorified Lusztig operators help illuminate the higher
structure of categorified quantum groups.

We now proceed with the definition, regularly abbreviating 7:’ | simply by 7. In
addition, we will make use of color in the diagrammatic calculus for Z{Q in specifying
7. as follows: strands which are i-labeled (their label agrees with subscript on 7;)
will be black, those whose labels j and j’ satisfy i - j = —1 =i - j* will be blue
and magenta (respectively), and those with label k satisfying i - k = 0 will be green,
unless stated otherwise.

4A. 7:: 1 on objects and I-morphisms. On objects, we define the 2-functor Tl/ , by
T () =si (M),
where s; is the corresponding Weyl group element, defined by s; (1) = A — A;a;. On
generating 1-morphisms, we define
T/ (1) = &1,
Filgon(—2—21;)—> &0 ifi =¢,

./ g 1 — \
Ti&ed &EEi L) s Cielso(l) ifi-€=—1,

&5@1&.@) ifi-£=0,
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&0— 5i1s,-(x)(?»i) if i =£,
(Fo1,) = - .
TiFel FoFilgon(—1) s &F Fl, o ifi-€=—1,
&1 ifi-£=0,

where we have omitted all nonzero terms in these complexes, and we follow
our convention in denoting homological degree zero with a &. Since each of
these complexes has at most two nonzero terms, it is trivial that the square of the
differential is zero.

4B. Definition of 7:’ | on 2-morphisms. The 2-functor 7/, is given on generating
2-morphisms as follows. In these equations, we let our strand labels satisfy i - j =
—1=1i-j andi-k =0, and follow the color conventions specified above. We
will omit labeling the weight s; (1) in the far-right region of the diagrams in the
codomain, and in most cases will also only show the nonzero terms in our complexes.
Additionally, we will depict complexes of the form

(%)

w L xgy 20, 7

as anticommutative squares with arrows labeled by the corresponding maps, for ex-
ample, the last diagram in Section 4B2 depicts a chain map between such complexes.
In all cases, the chain map condition follows from the defining relations in Uy.

4B1. Definition of ’77 | on upwards dot 2-morphisms. We have

Fils o) (—A:) & &l n(2)

(SR RGO R
i i k k

Filgon(=2—1;) & &l

Pad

Tl_/(k—i-aj% )\) _ ‘??1&(}\)(2) L)Sifjls,(%)(?)
] I ’I >< L’ J

&gjgi lsi(k) #) gigj 1s,-()») <1>

4B2. Definition of ’Tl/ | on upwards crossing 2-morphisms. We have
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FiFi 1;,(1)( 8 —2A;) & &l o) (—k - k')
09 A| A
TP\ kv ja

FiFi 1s,(k)< —2xi) & E& s

Ek]: 1s,(A)< )\'l -Egkls;(k)<_2—)\i>
T( /A> =/ : W’(\A) = X ,

ik ik ko ko
Fi&ilgon(—=2—A;) ExFils oy (=2 —Ap)

Ei&iFilyon(—1—A)—L 1 & EE; Fils o (—A:)
()= K 29
v i _l >< IR
Fi€i&ilgop(—1— i) —1d T & FiEE L6y (—Ns)

7( X*) =
() -1 X

fgglyl()\_) )—)&}-55 1s,()~) 1—

gjgi}-ils,-(k)< 2— )\, )—)& 55 ]:15 (A)(

X

‘gkg'gilsi()tﬂ ] k)—)gkgg 151()\)

(-] i)

& Ei&EL 0 /i k &€&k L 0)(1)

&gjgigkls,-(kﬂ —k - ])—)55 5k1v,(k) l—k ]

() 1 Y

&5/(5]'5,'131.(1) k_J i pkgg 1 (D)
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/ A
o)
i
.
EEpEiELs (1 —j-])

. EEEE Lo =T
*EHEEELyony (=T ]

tr,ll‘,j//lr?i\,;r 5]’5151511s,(x)<1 _J A J/>
_(S”/U,/ T/><\T _[i;l
f Ji iJ
’ i Ji

JouJi

gigjgjfgilsi()\)(l)

1

1T
J i J igjgigj’lsi()»)<2>
&EEEHEL )
. <1)
Jiji Ei&EEj Lon(l)

In this last diagram, we have omitted the differentials on the codomain, so as not
to overcrowd it; they are given analogously to those in the domain, with j <> j’.
Recall also that v;; := t;ltﬁ.

4B3. Definition of T, | on cap and cup 2-morphisms. We have

& Lol —2;) & & Filyon(l+2:)
H(A)mw s (V)]
& Fi&ils i) & 10y
& Fi&iL (1 =) & L0y (1+2)
7 )= e K/[ (A )= rﬂ
&1, & EiFils o

Note that the maps have the correct degree since the rightmost region in all the
images is labeled by s; (A), and 13=(i, 5;(A)) =1, A—Ajo;) = 1A F20,;, = 1FA,;.
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We have
& Loyl — ) & Fi&ilg (1 +Ag)
N n k A Y
7;( = ’ T % = % ’
& EcFils o0 &1
& EcFily o1 — Ak) & 1601+ Ak)
A KA k
" . / —
OO TN
o *® Fi&ils o

The maps have the correct degree since 14 (k, s; (1)) =1 (k, A — X)) = 1 £ Ag.
We have

.7'—].7'—55151.()\)( ) ></ .7:.7:55 1;(1)24‘)&

(—1)ics, M T( I)A +,.

> &1

=)

0 &l0) 0

(=DM te ] @/

AEE T Filgonh;—1)

Ll JTX

Ei&FiFilgoy(h; —2) E&FiFiLs00(A))

e

& EGEFFiLy oy —1)
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®EETFFilyon(l—2;)

></

Ei&F i Filso(— EEFFiL,o)(2—1))
& EiEFiFiL0)(1— 1))
(—ti)M e, (=D e (1M eil g, (=D e
M &
0 &1 0
; A

()=

0 &1, 0

A

iy R
(—t;)! )"Ci,,\(—1)'\fcj,)\

LN

wy R
(—t;j)! )"Ci,x(—l))\’cj,;\

& FFEEL Gy (—

xv/

FiFi&i&Lyo)(—2—Aj) FiF ;&L 09(—Aj)

N\

& FiFEE L py(—1—1))

As above, a simple computation shows that the maps have the correct degree, e.g.,

si(3)
deg(m ) =1+ (j,5i00) + 1+ (i 5i () +a
=244 =MD+ —=AG-D)+i =144,
5. Proof that categorified Lusztig operators are well defined

We show that 7:’ | is well defined, i.e., that 77 | preserves the defining relations
in Up, up to chain homotopy. We’ll see, however, that many cases do not require a
chain homotopy. For example, 7:’ | preserves on the nose any relation that does not
involve j-labeled strands (for i - j = —1), since here the complexes involved have
only one nonzero term (in the same homological degree), precluding the existence
of nontrivial chain homotopies. A complete proof consists of checking many cases
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for each relation, since 7:’ | 1s defined in a piecewise manner that depends on the
connectivity of the graph associated to the simply-laced root datum.

To simplify this task, we will work with the presentation of Uy implicit in
Remark 3.4. Specifically, we view downward dot and sideways and downward
crossing 2-morphisms as defined in terms of cap/cup 2-morphisms and their upward
analogues (in the case of downward dots, we choose the presentation in terms of
right-oriented caps/cups). It follows that ’7:’ | 1s already fixed on these 2-morphisms
(by 2-functoriality), and we record its value on these composite 2-morphisms in the
Appendix. We make extensive use of these computations in the sections that follow.

Throughout, we will continue with our convention that the labels j, j’ € I satisfy
i-j=—1=i-j" and correspond to blue and magenta strands, while the labels
k,k' € I satisfy i -k =0 =1 -k’ and correspond to green strands. We also let £ € [
denote an arbitrary label.

5A. Adjunction relations. We verify the right and left adjunction relations given
in Definition 3.3(1).

Proposition 5.1. For all £ € I the equalities

()
()

hold in Com(Up).

T A
l

(L,
A

17) )
1) )

Proof. When £ =i or £ =k with i-k =0, these relations follow from a straightforward
computation, provided one is careful with the relevant parameters. For example,
the first equality follows from the computation

7(, () met 0= Lo 4),

1

when £ =i, and from

T/( k) _ t}g?,-Jri'k)f}»,- si(A) _ s _ 77( A)’
k ! k k

when ¢ = k. We omit the other checks, as they are completely analogous.
For ¢ = j, the coefficients are more delicate. As 7/(€;1,) is a 2-term chain
complex, we will use an ordered pair to describe its chain endomorphisms (with the
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convention that the first term in the pair corresponds to lower homological degree):

)»—{-Otj
T( N ): (<—1>M+zc;i+aj<—1>*f'cm w
J A
Ji

Aj+2)+1 —1
(_1) J Cj’)h_;'_a

(1] ) (1),

Joi i J

J
Ji
((—I)Xj-i-lcj_’)lh(—1)(kj—2)+16j,x_aj m ,

PG e, m
_ (J [se, | sz) 277(] A)’

J i i J J

i A
T( m )=<—ri,->1—k'ci,x<—1>Afc,-,;<—ri,-)*z L (S
ot ( >

(1] 1#)-r(])

J i i J

)\._aj
—W =21 -1 :
7?( /N )=(_tij)l O""'”C[,}L—Olj(_l))‘/ 2cj,A_aj(_tij)lei,A—aj(_1)}L]Cj,)~
' A

R
SRR CI.

J i iJ

A+l
(=DM,

2

()

SNS—

5B. Dot cyclicity. We verity the dot cyclicity relation given in Definition 3.3(2).
Recall that, in our presentation given by Remark 3.4, the downward dot morphism
is defined in terms of the upward dot morphism and rightward cap/cup morphisms.
Dot cyclicity is then equivalent to the following.
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Proposition 5.2. For ¢ € I, the relation

(IR
1
holds in Com(Up).

Proof. We compute the left-hand side, and verify the relations by comparing to
the results of Section A.1, which give the value of 7, on downward oriented dot
2-morphisms:

- A
7;/ (lm )L) — Ci,)tci,)}—a,v ﬁl = ){ = 7:/( }/ )
1 1
7 ( jfﬂ A) = (1)) "MtV o (=DM R ()t e (=D Mey,

(o)

Joi i J

o)==t =m( 1) D

5C. Crossing cyclicity. We now verify the crossing cyclicity relations given in
Definition 3.3(3). It suffices to prove cyclicity for the downward crossing, as the
relations for the sideways crossings follow from this and the adjunction relations. We
will use the value of the downward crossing from Section A.3, where (by definition)
it is given in terms of the upward crossing and rightward cap/cup 2-morphisms.

Proposition 5.3. Forall ¢, ¢’ € I, the equation

()

I
holds in Com(Up).

Proof. We compute the left-hand side, considering the three possibilities for each
£,¢' € I in relation to the fixed node i € I. For both stands labeled i, we have

[
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For strands labeled i and j, we have

]

—1 Ai+1 X—Z—l
=Cir—ai—a (tj) (+)C1)La(1) j)»a,—

ri—2 —1 Al
Cia (=)™ 7 i may—a; (5D ejaa _% ’ %
i Joi i1 )
71 71 o1 _ ><V)\
l] ]l -

Ji
= (—1;))* Meipa, (DT i

1
}A o l
tljcl)L a,( tl]))L zA a( I)Ajcjk %& f& %J f&

For crossings in Wthh at least one strand is k—labeled and no strand is j-labeled,
the relations are trivial to check. We compute

A
’77 )\. = = =:77< >’
k kK k K
kK k k'
/ _ -1 . . _ 2 / g /)x
7 @)‘ = € h—aj—ay Ci M ki @_tki , = i( , ;
i k i k
i k ik
4 .. —1 _ —1\ e o \\V)»
T N A = Ci -4 Ci p—a; N =1, 4 —7;< ‘ )
k i k i
ki ki

For strands labeled j and k, we compute

1= (a+1 hj=2—jk =1
7;/ @k - (_tij) (it )Ci,)»—aj—ak(_l) g Cjn— o —o
i k

e (<)M erl_g (=D ies JJ, /J
Joi [
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/ J / Yy
kL A
=(—1)Jktki2tjk< fv/ ) fv) )=:77</k )
J ik i J ok !
kJj
(_,ij)x;c;;_ak_aj(_1)A./—J'-kcj,,xak< Kﬁ , K\ )
k J i ki J
. _ A
k J i ki ] ko

Finally, in the case of a crossing between strands labeled j and j’, it’s clear that

([)-e ()

-/

JJ

for some scalar C. A direct computation shows that

— e -1 el . —l., -1 . -1 -1 _
C=r; tu’cz,k—aj/Ci,,\—a_/cj,kcj,x—aj,CJ’,k—ajCj/,A(CJ »)»—Oljcj’,kcly)hcj,k—aj/) =1. 01
5D. Quadratic KLR.
Proposition 5.4. T/ preserves the quadratic KLR relation.

Proof. We verify (4) in Definition 3.3, first considering the cases that do not require
homotopies. We compute

0 ifk=k,
/( ) 77 (tkk’ ) if k- k/ = 0,
Ti = = kK
k K k K
77(%/' + tirk ') ifk-k'=—1,
k k' k k'
a /
77( & >=tkz KV = lki l=7:<l‘kz T)
ki ki k i k i
77( x >=tkl » :tkil = /(tle )
i/k {k ik ik
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Our next four cases concern endomorphisms of chain complexes concentrated in
two adjacent homological degrees; we denote endomorphisms of such complexes
using ordered pairs. We compute

() <F

J kJ k1]
(tkj H,rkj “) if j k=0,
kJji kil
= 3
(l‘kj TT-FIJ/C }\T,l‘kj.TT-i-tjk T}\> if j-k=-—1,
k J i kJ i kilJ kiJ

and similarly

")

™o T/(rjﬂ ) k=0
[ X - x| _ j ok
ki (j; > Yki (\; / $ N
J

Ti<fjk fij’) if j-k=—1.
Kk ik

The remaining cases only hold up to chain homotopy. We compute

(T
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R Lot | L] [ 4% L] o] ]

i [ 2N A TJ 1 rJ i

B M) (-5

J i J i 1 1]

where in the second step we make use of the equality

R-g -t

L1

which holds in any weight. The result now follows since the chain endomorphism

(%] %))

J 1 [ 2]

is null-homotopic with homotopy & : 7/ (£;&; 1)) — T/(£;&;1,(2)) given by

Ei&iFilyo(—Ai) ————— &&EE Fil (1 —A;)
X1
Ei&iFils)(—=2—Ai) —————— BEEFilgon(—1—1;)

We similarly compute

(%)

[ i J
i J

1. w 3] [1od] ]
ool ]

i i i J

I
1)+ -4%)

i

i i
i

1 J 1
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where in this case we use the equality

S ERINN

|2 A A

which holds in any weight. The relation is verified since the chain endomorphism

(5 ]%)

1 J 1 [
is null-homotopic, with homotopy given by

Fi€i&ils oyl = Aj) ——————— SFEEjL;6)(2 — Ai)

X

Fii&ilgoy(—1— ki) ——————— SF&EE L0y (—hi)
Finally, we compute the case in which strands are labeled j
T/ (Ei€j1y) = REEEjEi L)
= Ei&EE) Loy (1) ® EEEE L5 0)(1) = EiEEiEj L 0(2),

and we denote the relevant endomorphism as an ordered triple. We abuse notation for
the component mapping between the terms in homological degree one: technically
this should be given by a 2x2 matrix, but, in the interest of space, we add all terms
in the relevant matrix, as the components are distinguished by their (co)domains.

"(7)

./

J

+1ij
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+ iy

J

7

Joiji

J

—1jidjjr

+ ijtij + tijr
iJoJi

which vanishes if j = j’, as desired. If j # j’, we instead have

iJoJi

+1;

)

+t

i}%
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If j - j/ = 0 the right-hand side of the above simplifies to

(o | )t | () o] 20t XT-TTT]

i iiilJ J
+ijr

and if j - j/ = —1 it instead simplifies to

T U/% T +1j1; T %

+ t//’tlj +1jjt;; U » (Ljjrvijr —tj Jvlj)}\ >< %
I
2 2
+t,-/jv,-jﬂ >< —Ljjrvij >< —fjjﬁ T T T —fj’jﬁ T T $
ioiilJ JoiiJ iiilJ iiilJ
Fjpt) iyt +jt
Ji'tij J'Jtij Ji'tij
+t}] ij W\ t]]/tl] é{ t]] 1]
iJoji i iJjoiy

In both cases, the second summand (the “error term” preventmg the relation from
holding on the nose) is null-homotopic. The nonzero terms of both null-homotopies
are defined as

tiit
Y : if j-j' =0,
A= Ji 1]
-1 —1
tiit +tjit,
ifj-j =-—1,
jiJ JiiJ JJ
-1
tit..
v , ifj-j'=0.
B:= Lo
Ji'tij 7t e sy
ifj-j =-—1.
1 Jja) 1 Jja) JJ
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and seen in the following diagram:

EEEEL o (—=2j-j +1)
XI17T e .
/./ EEEE L o(=2) -] +2)
b8 EL (22 TR Xt~

Ei&i&iEiLgon(—=2j-j +1)

Ei€ip&ilgoy(DN-TTX
/ EEEE)L;00(2)

&EEEEL /
XTT
TR Teg661,0(1) 0

5E. Dot slide.

Proposition 5.5. T/ preserve the KLR dot sliding relation.

Joi i

ings involving j- and j’-labeled strands (for j-i = —1=j’-i), as all others are com-
. £ .
VA

Proof. We verity (5) from Definition 3.3, only exhibiting the computations for cross-
pletely straightforward. For ij-crossings with dotted i-labeled strand, we compute
A / , £ £
[ ) [ ) J [ 2N A
l- =
j i

iJ

which is null-homotopic, as desired, via the homotopy

Ei&iFilspn(l —Ai) ———— & EE;Fily)(2— M)
D
‘f\

Fi€i&lyon(—=1 =) ————— & Fi&EE L ) (—Ai)



CATEGORIFICATION OF THE INTERNAL BRAID GROUP ACTION, I 45

For the ij-crossing with dotted j-labeled strand, we have

"(7)

KR )

For dotted ji-crossings, neither case requires a chain homotopy, so we omit the
computations, which are straightforward.

Finally, we consider dotted jj'-crossings. As in the proof of Proposition 5.4, our
chain maps here map between complexes supported in three adjacent homological
degrees, and we denote them as ordered triples. We have

)

JoiJ i JoiJ i joiiyj joiiyj

+5JJ’tJl +t’JT>< _I’JTXT
ji zj iJoJi iJoJi

iJj i JJ

o iJjo )

11

OB
ﬁ}{ iRl K BT

JoioiJ i JJi



46 M. T. ABRAM, L. LAMBERTO-EGAN, A. D. LAUDA AND D. E. V. ROSE

-1 -1
77<TT)+ lij }{j’tij
JJ
JoiJi JoiiJ
o X v [XE-TTTT =0
= Ji ilJ Ji ilJ Jjoi i J
-1 -1
i) >l [
iJJ iJoi
0 if j #j'.

The relation thus holds on the nose unless j = j’, in which case the “error term”
is null-homotopic, with homotopy given by

EEiEiE Lo (1) -TTX
><TT/ . T

EEiEELuoy(2)

5j5,»5i5j13,.m(1>>< I

v Ji

&Ei&ilikils0) T

%

JiiJ

Ei€i€iil0m(1)
EEEE L2
*Ejgigjgils,-(k) J J ‘1()\)< )

Ei&i&iEi L (1)

The verification that

VA A |

T/( A><_A>< ) ’“%‘W(T T)

J
is almost identical to the above case, so we omit the details. O
5F. Cubic KLR.

Proposition 5.6. 7, preserves the cubic KLR relation.

Proof. We verify (6) in Definition 3.3, the “Reidemeister III”’-like KLLR relation.
There are 27 cases to consider, depending on whether the label ¢ of each strand
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satisfies i - £ =2, —1, or 0. To cover multiple cases at once, we will use the notation

tap fa=canda-b=-—1,
Aabc =
0 else.

Note that Agpe = Acpa.
The relation holds on the nose (does not require a nonzero homotopy), except
for the strand labelings in the list

iji, ki’ jijt o Ji'i,

where we continue with our conventions for strand labelings (i - j = —1 =i - j" and
i-k=0=i-k"). In the interest of space, we will explicitly exhibit three representative
cases that do not require homotopies (to give the flavor of the computations required),
exhibit the homotopy and verify the relation in the i ji-labeled case, and exhibit the
homotopy (but not include all the computations involved for the verification) in the
remaining three cases.

In the jii-labeled case, the relation holds on the nose via the following computa-
tion, where, as above, we denote the chain map as an ordered pair:

! _ 2
J i Joii

?—%f
v

~
~
~

Q&?j

~
~

==
R

~

=
=
——

~
~
~

=
=
e

Joiii
ﬁi
Joiii
iJoii
iJoii

~
~
~
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To simplify, we use the dot slide relation to move all dots to the top, and apply the
cubic KLR relation to cancel terms, arriving at

Joiii Joiii Joiii
L§<+L§<>§+ |
Joiii Joiii J Joiii
Lé‘—i_%(&’&
i Jjii i Jjii iJjii i Jjii
i Jjii i Jjii i Jii

=0.

For the jik-labeled case, we have

A

:tl]
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where in the middle step we use dot sliding and (3-2).
The kjk’-labeled case is given by
a
T/

1

kJ K

I ~1
= | i < s T

kJik kijK
I N -1 Apig=]
= | % + Akjk b s i + Akjk g
kJjik kJjik ki jK kiJk
]
=7: +Akjk’
k J K kK J K

and all others that don’t require a nonzero homotopy are similar to these cases.
We now consider the cases listed above that require chain homotopies. Consider-
ing the iji-labeled case, we compute that

i Joi i Joi iJo

1

iJ i iJoii iJoii iJoii i i
/i i
a+1
i
:[ijg dQ+c+tij

a+b+c+d b
=(i,si(2))—2 ~
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A\.Ji i
a
i
—lij Z d+1@ —lij Z {}
Q+L Nc
a+b+c+d a-+b+c b
=(i,5i (M) — =(i,5i (A)— N
i ji
i U
i
= =1 Z d Q\C—f—tij
b+c+d
=(i,si(W)—1 /z\v

i J iJjoii

and

2 = —lij +ij @ +ij @ —tij @ —lij
ﬁ +t”@

In both computations, we make extensive use of (3-2). It follows that this chain
map is null-homotopic, with homotopy given by

iioJoi

= —1jj Z d

a+b+c+d
=(i,si(M)+a;)—1

¥

iioJoi

Fi€i&iFilso)(—2hi = 5) ——— Fi&i€j Fils o) (=22 —4)

\r
l,'j
¥

Fi&i&iFilso)(—=2xi =5) ———— Fi&&Ej Filg o) (=2A — 4)
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For the remaining cases, we provide the explicit homotopy between the relevant
maps. We have

/ /
T; ~T; + Ajikj
) L/
J J J J ik

via the homotopy

EEp&EEi&i L (1)

A&l tilun = e e e£61,0(1)

w

.'.gjgigkgj,gi 1s,'(k) —

— &EpE&i€iLs0)(2)
0
(#2)

DE;EiEEE ) L 0)(1)
with

1

- 1
ij )

1 _ o1 2 A=l
h = Ajijtt h*=—Ajjte; 1
Jikilj ik

For the jij’-labeled case, we have

T ~

1

e

+A4ij

AR N . LYy
1 . . .
J ot J J ioi

with chain homotopy given by (here we indicate the signs on the differential since
they are not the usual ones, due to the homological shift on 7;(&;1,))

Ep&EiFiEi&ilgon(—1—Ap) Ei&iFiEp&lgon(—1—A4;)
[ERCC
EEpFiEi&ils o (—Ni) EEiFiEj& Lgon(—Ai)
DOEEFiEiE L) (—Ai) OE;EFiEEj L) (—i)

"
lﬁ +) () Jﬁ +)

EEpFi&i& Lol —Ap) EEiFiEEj Lol —Ap)
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J J
hl=— . hh=-— . hi= , hi=— :

[ (), [,

J 1 rJ [ i J

i jiji ijiilj

For the final case with jj’ j-labeled strands, we have

T ~ T + Ay

1

A VI A
JoJ ] J g i

The relevant homotopy maps between chain complexes given as the triple composi-
tion of two term chain complexes, and is nonzero only when j # j’. We’ll exhibit the
homotopy assuming this, and that j - j* = 0, as the homotopy is more involved when
j+Jj = —1. The latter is only possible when the graph I" corresponding to our Cartan
datum has a length-three cycle (which in finite- or affine-type only occurs for 5/[;).
We give the relevant homotopy, where, in the interest of space, we follow [26]
in defining &, ..., := &y, - - - &, ; we also indicate the signs of the nonzero terms in
the differentials, which are given up to sign by the relevant ji- (or j'i-) crossing:

+ -+ 0
<i> Eijjrijil) \50+) Eijijrjid2) I
&Ejijiji —— BEjiijji(l) ——— @E&;jjiij(2) ———— &&ijijiij(3)
© 0D ®E;jijiij (1) T SEjiijij(2) =
00 i (;?3)
3

2 2
0 h32 h33

Herein, the maps in the homotopy are given by

T 3 byl

hy =1 it e , hy ==t vt e ,
JuJ i vig

2 _ 11 SN

h3 = —t;; vijt; g h3z = —vijt;;itjjr ]

JiiJid
2 — _1 .. _1 .
h23__tl] Uljtl-j/ t}j/ . D

Ji i1 1]
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5G. Bubble relations. We now verify that 7 preserves (8) in Definition 3.3.
Proposition 5.7. We have
~>* : o~ :
P ) =0 () )< fitme n=
l Xi—l4m 0 ifm<0, ' i 4m 0 ifm<0.

Proof. We’ll give the proof only in the clockwise case, as the counterclockwise case
is completely analogous. The computations in Section A.4 show that

si(A)
czk if =i,
—(i,8i (X)) —14m
o~ L Si(d)
T(Q ): e if 0=k
k b
' (LA —14+m l(k,vi(k).)—1+m
m 7 Sl()\')
jl IAZ( UU)_ Q Q 1f€=],
N+m—h @&+h

which immediately gives the result in the m < 0 case.
For m = 0, we compute

si (A)
2 _ 2 -1 _ 2 -1
€ia = CiaCi 00 M0 = CiaCin—ria 110
—(i,5i (M) —
_ 2 -1 Id —c o Id
- Cl.,)uci,)h 13’,-()0 - Cl,)\. lsi()»)’
L Si()
Aj Ai A
lkil p = tkil Ck,s; (V) Idlsi(x) = tkil Ck,h—hia Idlsi(x)
(k,si(A))—
— t)‘it_)"i Id _ Id
=Ll Chealdag 6y = Ch,a 1d1g, )
J, i
-1 si(A) _ -1 i
tf’ Ci Q Q W = tjl Ci 2 CisiCision 11 ) = i Cja—hia Idls,-u)
&+0 &40
l‘ C, Al‘ Ai Idlx,—(x) =Cj Idlx,-a) . 0

In Section A.4 we verify that the infinite Grassmannian relations from Section 3C2
are preserved by 7.

SH. Mixed EF relation. We now verify (7) in Definition 3.3.

Proposition 5.8. 7. preserves the mixed EF relations.
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Proof. All cases involving k-labeled strands hold, and are trivial to verify. The
following computations exhibit half the requisite checks, and the remaining follow
almost identically. We make extensive use of Section A.2. We compute

77 — = — =0,
k K kK k Kk kK
T 3—{ =r,;1§—l =0,
/ v
ik ki ik k
) )
7 v’\— - ﬁl—
k J j k'
AR [ |- 1* E W
1 (s
]k J ok jl Jk iJk

We now consider the cases requiring homotopies. We compute

which is null-homotopic, with homotopy given by

X1

Ei&i&i L) (Ai) L EEi&lgon(hi +1)

Ei&i&i L0 (M) EEi&lgon(hi +1)



CATEGORIFICATION OF THE INTERNAL BRAID GROUP ACTION, I

and
i i
I -1
" - [ E% ? _
i Py iJi | iiJ
N ;%
e i1 iiJ Y

is null-homotopic with homotopy given by

-1

&L o)k —1) Pl E&EE Lo (M)

gigjgilsi(k)()\i — 1) gigigjlsi()\)O‘i)

Similar computations show that

’ _ -1 -1
Joi Joi J i 1]

which is null-homotopic via the homotopy

Pl

[

FiFiFilgon(—2i —3)

FiFiFilsoy(=2ri —2)

FiFiFilgon(—A; —3) FiFiFilgon(—Ai —2)

]

J i
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4 _ —1 -1 :é?
i i 1 J1 11

and that

1

which is null-homotopic with homotopy given by

-l X

FiFjFiLs,o(—hi = 4) —————— FiFiFilyo){—hi —3)

FiFjFilgo (=i —4) FiFiFjLlson(—Ai —3)

i J i

The final case, involving j- and j’-labeled strands (with j # j’), will be addressed
in Proposition 5.10 below. ([

51. Extended s, relations. We now verify (9) in Definition 3.3.

Proposition 5.9. T preserves the extended s, relations in the i- and k-labeled
cases.

Proof. In these cases, the relations hold on the nose, as we confirm:

Vi
RS
LY atbte MY

i A |

NeTi si(1)
=(—1) gg +‘ T—czkci,f O
- a+b+ff'\’

i i ro1 =\i—

i si (1)
Sl 2
v at+bt+ce= N

i Pl —si()—1
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i si()
—(—1)2 +T ‘—c?’)‘ci,f :gc
DYoo atbie (Y
/i si(0)
- Qo] z l
SR S A A
o’k )
7 + B Z bQ:LC
k ok ko k a:,{fff N
o’k ;i (X)
_ n _t]?i,- tk—ixl- Z Zo.+c
Kok kok aibie N
o’k 8;(A)
_ " _ Z b0+c —o,
Kok Kok o T :
ok
7:/ + _ Z ZQ.-i-c
Kok Kok A "
o’k ;i (A)
_ n i Z bo.+c
Kk k ok _“ffj_cl "
ok 8; (M)
_ n _ Z b0+c _0 0
koo e gt o

We conclude by considering the outstanding relations, i.e., the j-labeled extended
s, relations, and the jj’-labeled mixed EF relation. These are the most involved
relations, in part because the homotopies involved are not necessarily unique. Indeed,
if Hom(X, Y) denotes the chain complex of all homogeneous maps (that are not
necessarily degree zero, or chain maps) between complexes X and Y, then given
any element o € Hom™2(X, Y), the element d () = dya —adx can be added to any
homotopy / without affecting dyh + hdx. Our previous cases have not admitted
such an «, but in the present case there exist (many) such «, given by any map
5i5j/ﬂfjlsi(k)<l> — Sj/gifjﬂlsi()t)(—l).
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Proposition 5.10. The relation

AUEE
s-n 7| - 0| sy ST & o
i ji Lo &)
7 J ”J{J,J_ri_ Y

holds in Com(Up).

Proof. The left-hand side of (5-1) is given by

A/ ETFilon(—1) —= 8EiEF;Filyoy(—1)

| !

%
(5-2) E&jFiFilsm &%) e 7 FiFilgo
®Ej & FiFils o OEEFiFilgo

| |

EE)FiFiLlao(l) —2— &E)FiFilaoy(l)

where the components of the chain map are given as follows (which can be verified
by completely simplifying both sides of the equalities):

o1 = + (= 1%

J v J J v Ji

=D Y Qf +8j1tji
d+e+f a+c—
=—hi—1 | Aithj—1
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2 8
(p2=—lj 5” + (=%
/ 17 1) I ji
&)
c &
—Ai—h a+c—h
—8jjrti Z Z(_Uij) ' i{}\c
a+b+c h=0
=A;—1 @ ath
ij
]
5.
= 8”‘/[]‘1’ +t (—1) i’ Z (—Ul'j/)g .
a+€— d+e+f+g
AitA—1 =32
(\/
iJ

i
AU
—Xi—h Ntc—h
@3 =10jjtji 8jjtij E E(_Uz’j) ’ ia°
a+b+c h=0
e : =h-1
i /I

=8jjtii Y — 1t (=1 Y (—v)f

ate= e+ f+
AitAj—1 ——{ —gl
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j i
Y AN
: &
P4 =tijr —8jjtji +6;jtij Z Z(_vij) =
a+b+c h=0 b { 3
N _ =x;—1 (7R

<
8y
@s = —tijtij @ + +(=D°%
7
I ! Jid Jii1 y
&
: 70
—)\,'—]’l c—h
8t Y > (—viy) a
I b (3
az—g:fi_(ih 0 m &+h
Ji
o ,.
-1 . o Y o j
= 115 (=1)° Z (—v;ij)8 s €+ (=1 Z . Q
L35 LA
d+f+g= d+e+f .
—Ai—1 =—A;i—1 .
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J ij ] 4
< W/ d
+38jjr Z @ +8jtij Z @ +8jti Z ;
a+b+c= a+b+c= 7 a+b+c=
k[+kj—2 )\i+)¥j 2 Ai+kj—2
b
J 1 1]
%6 = + (=D ”/Il
1 J 1J 1
X
S
=t (=% Y (= v;,)g
e+f+g
=i—1
J

i =D Y (—p)f
d+e+f+g
=—1i—2

The chain map given in (5-2) is thus null-homotopic, with homotopy given by
the diagram

EE/FiFily
CEF i File oy (—1) — S LTS —S EESFFi 1. (1
*5J 51]:1]:11&()\)( ) ®5j’5i]'_i~7:j1s,-(x) 515] ]:1-7:/ s,(k)< )

§EFiFi,
&EjEiFjFilson(—1) — @5],,]51_ }l ]:-]v.s(,);l) — &&pFiFjLyen(l)
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()

where
J

I _ ¢ 4. 2 :
hl —SJJ’tJl >

a+c=

)»,'-i-}\j—l
IS
l

i
1 S i
h2=(_1) I dz %Qf—k%j/ bX:
+e+ +b+c=
w08k X

+
e
i Z:
™
1]
DEE

~
£

X
W2 = - (= 1) ot | iy =8
1— ij’ L Q\ JJhJt
dtetf+g 8 s atbte=
=*}u,‘*2 , )\.i+)\,j71 b
[ J

1J1
J
e
— 8t Y ;
a+b+c=
)\.i+)\.j_2 b
1 J
g/
i
2
2, -1 8, \g g L
R DI CI L RN RC S IRy O
et+f+g a+b+c=
=—hi—1 ty T AR =2 (G
1]

It remains to verify the FE version of (5-1). We can proceed to compute as
above, but in this case we can obtain the relation via a trick using the symmetry w.
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Indeed, note that, up to scalar factors, each map determining

(%)

is given by applying w to the corresponding component in
()
JJ

and exchanging the roles of j and j’. Upon taking the composition, the discrepancies
between the relevant scalars cancel, and we find that the maps determining

./

are given by applying o to the ¢;’s. Similarly, the other terms in the relation are
obtained by those in (5-1) via w. It follows that we can “apply w” to the proof of
Proposition 5.10 (in weight —)) to obtain the following.

Corollary 5.11. The relation

Vs
7| - gg +(—1)BMJ T—Fajj/ Z b‘(‘j—w ~0

i A A el
holds in Com(Up).

Appendix: Computation of 7:’ 1 for composite 2-morphisms

In light of Remark 3.4, we can compute the value of 7:’ , on downward dot and
sideways and downward crossing 2-morphisms in terms of the presentation of
these 2-morphisms in terms of upward dot and crossing 2-morphisms and cap/cup
2-morphisms. In Sections A.1, A.2, and A.3, we compute this value, and in
Section A.4, we compute the value of 7:’ | on bubbles. Throughout, we employ our
conventions thati - j = —1=i-j"and i -k =0 =1 -k/, but assume no other relation
between j, j’, k, and k.

A.1. Value of T; | for downward dot 2-morphisms. We compute 7;, on downward
dot 2-morphisms using the right cyclicity relation. Each of the following is a direct
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consequence of the definitions in Sections 4B1 and 4B3:

Elyn2+A:)

Eilgon(h)
&Fils)(2)

FiFilgo(l) —— s &FiFili0)(2)

Joi >< i
FiFilsy(—1) — " &Fi Fil40)
This agrees with the value in terms of left cyclicity, which is verified in Section 5B.

A.2. Value of '7:: 1 on sideways crossing 2-morphisms. We explicitly compute the
value on sideways crossings in terms of the images of upward crossings, caps, and
cups. As above, each follows via a direct (but sometimes tedious) computation
using the definitions in Sections 4B2 and 4B3. In the interest of space, we will omit
displaying the domain and codomain of the image when they are 1-term complexes,
as, save for the relevant shifts, they can be read from the diagram. We have

()= ()= K

l l l l

o5)-+(31)
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K

FiFiFilsoy(=3 = ai) L@ Fi FFil o) (~2 = A:)

L J i

—lijlji
iJ

tijtji

-l X

FiFjFilyoy(—4— M) L L 8Fi FiFjls0)(—3 — M)

-| X

FiFiFilyoo{—4— k)Ll FiFi F Ly, 00(=3 — 1)

-2.,-1

Joii

X o

FiFiFily(=3 = hi)—Ll FiF Filyo) (=2 — i)

5)-r( 1)

1%

5igj5i 15[(1) ()\,l’ — l)i—ji>gigigjlx,-(k) 0‘1')

/><T iJ i

Ei&i& Ly (hi)—L Lt 58818 L)k + 1)

R

X1

Ei&:Ei Ly (M) —L &8 E Ly 00 (M + 1)

i

i iJ

,TA>< A

E&i& Loy (hi — ) —L L 86 L5 00 (Mi)
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1)) 7
()
)= (lA)-
(A=)
(=)=
(=)=
)=

& fkg 5 1; ()L)—%Fkg 5 ls (A)

IR yo

&5 5}}61”(1)—)55‘ }—kls,(k) 1

&» 5'5']:/(1&.()\)#&'Sj]:klsi(k)<1>

ST

i
4 Fi€i&ilyon—r Lt S FEE L 00(1)
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FiFi&ilyoy(—1)—L L& FiFi&l,0
= (-1 K\I (=D t\\\l
't I g 1k

Ek}"j}? Lo (=D d EFF L0

)

Ek]- flst(x) )k—>& 5](]:]:] s; (A)

= (= =7
tikt]k x ’ tlktjk

ﬂﬁ&%th—LLh&EE&%m

and

T/(( D't 1><3~> T/<( 1)1},@@):

& FiFi€jilsm

\>

FiFi&Er1g (1)
FiFErEly oy (—1) M
\ /
j & FiFi&iEjls o)
)
8jj'vij>r< i —1
Y J/l J1 _ti'i tljj// ,Gj

TT &

\tf} Ju
gigj’}—ifjls,-(k)“)

R4

jiJ
Ep&iFiFilson(—1)

Ji *gj’giﬁfjlsi()»)

7‘/(( 1)]]+1t ><)») T/<( 1)Jj+1t”f?g>:
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*EE)FiFils
/ &€y FiFiLgon(l)
Ej&iFjFilson(=1) }i}% A )
\ B l_]/ /
J & EpEiFiF Lo
TN i tij}i}%
tij ioji 2>J< /
t- 1 Ji]
RN T,
J il
*}—l‘fjgj’gilsi(x) \Lx
KT R
R FiFi&EjrLsoo(l)
FiFi€j€ilson(=1) REMAC A
Ji /ll\j\/
%?%\ & FFiEE L0

A.3. Value of 7:: 1 on downwards crossing 2-morphisms. We have

(2)=r(B1)=- X
(=)=

(=)=
()= (Sl)= X
() =+( 1)

& FiFiEL o)k — 1) —L L LR FiE L6 (A)

—1.—1 —1.-1
=lij 1ji % ~lij i %

i7 T X P
® EFjFiLy0) i = DD EFF Ly (1)
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O9)=(8T)

& EFFils o) b + 1) dol Fi F L, 6 (A +2)

2

_ J i1
Joii i Joi
& FiFi&iLs o)A FiFi&ls 0 (Ai)

T

B J i
(/A) _ /< s )
& FLFFilyoy(—1 = j k)AL R Fi L oy (—j -k
(— 1)jk (= Wk
0" t]k W i th

ijfi]:kls,-(x)(—l)

[~
=~

FiFjFilso)

FiFjpFjFilsop(=1—=j-j')

fi Wﬂ/ﬂﬂlsiaﬂ—j ')

FiFiFiFilso(=2—] 'J'/)
JouoJ /

iy’ i] ll nFNFiFjLgoy(—=1—j-j")

J'

—1
=85 vij le fij
AR

i iJiJ
| L FFiFrFilso (=1 11X
iy / i JJ
\
F]E-F]’-Els,()\)( 2) zi_71 *‘E‘Fj‘/—-}‘r]/lsz()‘)
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A.4. Computation of ’7:: 1 on bubble 2-morphisms. We compute the image of
bubble 2-morphisms, and use them to explicitly verify that TI/ | breserves the infinite
Grassmannian relation:

A ; si (L) ; si(A)
2 2
77 G =Cia =Cia )
i, —1+a (i,\)—1+a —(i,5i(M)— 14
A ; si(A) l. si(A)
() )y —az ()
l (i —lta ) (i —l+ta " (i,5i (D)) —14a
P x si(A) o si(A)
/ i _ i
T o =l \ o Tl ¢
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/ —Af )
T; =1 » =1y o .
—(k, A) I+a —{k,\) =14+« —(k,s5i (M) —1+a

For j-labeled bubbles, we use the bubble sliding relations from Section 3C3
(note that, in the first equation, the number of dots on the black circles equals zero
for both summands):
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Similarly, the image of the counterclockwise bubble is given by

j A
7 )
—(j,)\)—l-i-oz

min(—\;,c) j i
—A; -1 —Xi—h ;
= (—1ij) ’Ci,,\lij< Z t;; (=vij) Q G 5i (%)
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- 1 ri—1 hj i A)
D MACO R SR G L
h= P
max(0,—X;)
RS WY )
Y _ S
P S G G L)
h=0 aro—h &+h

(In both cases, recall our convention that any sums with nonincreasing index are by
definition zero.)

These computations for the images of bubbles under 7:’ | are only valid when the
number of dots is positive; however, our next result shows that they also hold for
bubbles with a negative number of dots (i.e., for fake bubbles; see Definition 3.3(8)).

Lemma 1. 7/, preserves the infinite Grassmannian relation:

A A 14 A A
T/((Q 4+t % ? t“+...)(Q +..._|_% > [0‘_|_...)):Idlv .
P\ T 14 -1 i 2 4o 5 ®

Proof. The only nontrivial case is when the bubbles are j-labeled (fori - j = —1),
and here we compute the relation in degree « as follows:
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